
DogeGAN-XL: end-to-end solution for generating NFTs

Alex Kashi
Harvard University

alexkashi@g.harvard.edu

Geoffrey Liu
Harvard University

geoffreyliu@fas.harvard.edu

Abstract

There has been a recent surge of data-centric approaches
to computer graphics, using deep neural networks as gen-
erative models for photorealistic and artistic content cre-
ation. Recently, the introduction of Non-Fungible Tokens
(NFTs) has created a marketplace where individual artists
can submit their digital artwork. This market has seen a
dramatic increase in demand, driving the prices of some
digital artwork collections to millions of dollars. We pro-
pose an end-to-end solution to generating digital artwork,
using Generative Adversarial Networks (GANs) to mimic
popular collections of NFT artwork. The output of our GAN
is then upsampled using a pre-trained super-resolution net-
work. NFT artwork can also be generated to mimic the
qualities of input images and text. Our end-to-end train-
ing pipeline, DogeGAN-XL, is designed to be computation-
ally feasible, and our proposed pipeline can be trained in
less than two days on a single NFT collection using a single
GPU. There is a panoply of potential applications for our
pipeline, from creating marketable NFTs to avatar genera-
tion in the metaverse.

1. Introduction
Generative Adversarial Networks (GANs) are a com-

monly used tool in computer vision for generating new con-
tent from examples. Typically two neural networks, a gen-
erator, and a discriminator, compete against each other. The
generator’s goal is to produce content new content from
the distribution of the training data, while the discriminator
judges if the generated image is a forgery or from the orig-
inal distribution. GANs have become a popular neural ar-
chitecture for generating content and has seen applications
ranging from self-driving cars to the metaverse.

Non-fungible tokens (NFTs) are unique cryptographic
tokens stored on a blockchain that can be sold or traded.
NFTs have many use cases; however they are most com-
monly used for trading and verifying ownership over dig-
ital artwork. At the time of writing, the market value of
NFTs is estimated to be $41B USD. Most of the highly-

priced NFT artworks are bundled into collections of images
(≲10,000) with the same artistic style. The appeal of ap-
plying GANs to NFTs is obvious. GANs can generate dig-
ital content based on prior art worth a significant amount
of crypto. However, whether the content GANs generate
can become high-value is an open question. Many people
have made this association and sold AI-generated NFTs on
OpenSea, trading up to 194 Ethereum or USD 463,307 in
volume 12.

Training GANs is notoriously tricky and computation-
ally expensive. The training procedure is sensitive to the
choice of neural network architecture, loss functions, and
training hyperparameters like the learning rate of the dis-
criminator and generator. The GAN training process is not
guaranteed to converge. Most commonly available GAN
implementations are trained using choices that perform well
on natural image datasets, including ImageNet and high-
quality FlickR Faces, rather than digital artwork. Typically,
GANs require weeks to train, even on lower resolution im-
ages.

Our project proposes a computationally feasible pipeline
for training GANs on NFT collections and explores and
propose solutions to the unique peculiarities of training
these models on NFT collections. Our final solution can
be trained in ≲2 days using a single GPU and allows the
generation of new, unique NFTs based on input images and
text.

2. Related Work

Generative models that produce samples from high di-
mensional data distributions are widely used, especially in
computer graphics. Many generative architectures are avail-
able to researchers, such as autoregressive models, varia-
tional autoencoders, and generative adversarial networks.
Autoregressive models produce sharp, high-quality images.
However, they are slow to train and do not have a latent rep-
resentation. Variational Autoencoders are easier to train but
tend to produce lower-quality images. GANs produce sharp

1https://opensea.io/collection/bastard-gan-punks
2https://opensea.io/collection/gan-apes-nft

1

images, although they are hard to scale to higher resolu-
tions, have limited variation in the images they produce, and
training tends to be unstable. Exhibit issues include mode
collapse, vanishing gradients, and failure to converge. [11]
Despite this, in 2022, GANs have become the predominant
choice for image generation.

2.1. Generative Adversarial Networks

Generative Adversarial networks is a framework for es-
timating generative models via an adversarial process. Two
networks are simultaneously trained: a generative model
G that captures the data distribution and a discriminative
model D that estimates the probability that a sample came
from the distribution of the training data rather than the out-
put distribution of the generator G. The training process
for G is to minimize the probability that D labels correctly,
which leads to a possible solution where G replicates the
training data and D predicts 1

2 everywhere. The training
of GANs is complex and suffers from many issues, ranging
from instability to mode collapse [10]. Mode collapse is a
phenomenon that occurs when a random input provided to
the generator creates highly correlated images. It is com-
mon for the model to oscillate between modes while train-
ing [10]. Another typical issue with GANs is that the dis-
criminator becomes far superior, leading to vanishing gradi-
ents and halting the training progress of the generator [10].
Additionally, many researchers are compute constrained,
desire large images, and lack the large amounts of VRAM
required for large batch sizing, further contributing to mode
collapse. One way to combat this is to use gradient accumu-
lation between multiple batches, but this dramatically slows
down training times.

More concretely, G and D can be thought of two op-
ponents in a minimax game following the equations from
Torralba et al. [11]:

argmin
G

max
D

Ex∼pdata
[logD(x)]+Ez∼pz [log(1−D(G(z)))]

(1)
For clarity, it is possible to decompose the minimax

game into distinct objectives for D and G.

D∗ = argmax
D

Ex∼pdata
[logD(x)]+Ez∼pz [log(1−D(G(z)))]

(2)
G∗ = argmin

G
Ez∼pz [log(1−D∗(G(z)))] (3)

From these equations we can directly that the loss func-
tion is zero-sum and can cause issues when one side, typ-
ically the discriminator, becomes too powerful, no matter
what the generator does it will always get a gradient of zero
halting training. In this scenario, the generator uses its gen-
erative capacity to produce one image very accurately, ig-
noring other mode collapse.

2.1.1 BigGAN

BigGAN, designed by DeepMind, can synthesize images
from 128x128 to 512x512 was the previous state-of-the-
art in generating conditional class images improving the
state-of-the-art Inception Score from 52.52 to 16.65 on Im-
ageNet. BigGAN improves upon state-of-the-art by using
a substantially larger generator and discriminator networks
and a better regularization scheme [1]. BigGAN, however,
is noted to be unstable, without a significant performance
cost.

2.1.2 StyleGAN + StyleGAN-XL

StyleGAN-XL is a state-of-the-art generative model that
can produce images up to 1024x1024 on large, diverse
datasets [9]. StyleGAN-XL is an iteration of the StyleGAN
architecture, first introduced in 2018 by [6]. StyleGAN in-
tern is a standard GAN design described in subsection 2.1.
However, an alternative generator network is motivated by
a style-transfer network. StyleGAN also incorporates some
training tricks that help fix mode collapse and failure of con-
vergence. These tricks include using a Baseline Progressive
GAN [4], bilinear upsampling, adaptive instance normal-
ization, style mixing, and insertion of noisy inputs. An ab-
lation study is conducted to assess the importance of each
of these methods in [6]. StyleGAN-XL also automatically
train super-resolution layers, reducing the generator saving
computation complicity.

2.2. Image super-resolution

Image super-resolution (SR) is a subset of image restora-
tion, aiming to output high-resolution images from low-
resolution input images. This allows us to take a low-
fidelity or noisy image and generate a higher quality image
that performs better than non-model-based upsampling such
as bilinear upsampling. In this paper, we will be compar-
ing four different pre-trained image superresolution meth-
ods and determine which model works the best on NFTs;
SWIN-IR, BSRGAN, and Real-ESRGAN [7, 12, 13].

2.3. CLIP – Connecting Images and Text

Contrastive Language–Image Pretraining (CLIP) [8] is
a neural network proposed by OpenAI to learn representa-
tions for images and text jointly. CLIP uses both an im-
age encoder (e.g., ResNet/Vision Transformer) and a text
encoder (e.g., GPT-2) and uses contrastive pretraining on
paired image-text data to embed images and text in the same
space. In this project, we do not explore CLIP in detail and
primarily use a pre-trained CLIP model as a black box to
assess the similarity of a generated image compared to an
input image and text.

2

3. Approach
The aim of our proposed pipeline is to design an end-

to-end pipeline for generating NFT collections with limited
compute resources, i.e. a single GPU and limited time con-
straints i.e. the whole pipeline is trained in less than a few
days maximum. Our pipeline includes five distinct steps.

• Build a web scraper for NFT collections from
OpenSea.

• Downsample images

• Train GAN on downsampled images

• Generate images by exploring the latent space, using
CLIP to guide the generation process.

• Upsample the images using an image super-resolution
network

3.1. NFT data collection

Initially, we web scraped OpenSea using Selenium to
compile a database of NFT images. This method is not ro-
bust and frequently crashes, leading to missing data sec-
tions. We obtained an OpenSea API key online through
this OpenSea’s API application form. The OpenSea API
allowed us to robustly request full-resolution images of any
collection of interest at high throughput. Initially, we down-
loaded the following NFT collections.

• Kreepy Club (9,999 images, evenly split between 3
creators with unique artistic styles, $6.5m USD 3)

• Azuki (10,000 images, same artistic style for all im-
ages, $6.5m USD)

• Bored Ape Yacht Club (10,000 images, same artistic
style, $645m USD)

• Haki NFT (5,000 images in a similar artistic style as
Azuki, $1450m USD)

• CryptoPunk (10,000 images in a 8-bit art style,
$2348m USD)

3.2. Determination of input image size

Our goal is to train an end-to-end platform for NFT gen-
eration. Therefore we would like to produce the highest res-
olution images possible given our hardware, one NVIDIA
RTX 2080TI, with 11 GB of GDDR5. This represents
a significant challenge when many GAN architectures are
trained using at least 8 GPUs clusters.

For each architecture, we investigated what the high-
est supported resolution would be given a batch sizing of

3Volume traded in $USD using 1ETH = $2600USD

at least 8. It was determined for each architecture that
128x128 was the largest we could support. This realiza-
tion required us to add the additional need for SwinIR to
upsample our images [7].

Furthermore, because of limited compute resources and
our aim of training an end-to-end NFT generation pipeline
using a single GPU within a matter of days, we used down-
sampled 128x128 and 256x256 versions of the original NFT
images as the training data. These sizes were selected
based on two metrics. First, using BigGAN and Style-
GAN’s approximate training time, 128x128 images would
take approximately 16-32 days to train using BigGAN 4

and training StyleGAN2 on 256x256 images would take
approximately 32 days to train 5. We also qualitatively as-
sessed the capacity for different down-sampled images to
be reconstructed using a pre-trained image super-resolution
network and decided that 128x128 images were the mini-
mum image size that retains texture and fine-level details in
the NFT when upsampled (See appendix Figure 9). Since
most NFTs have smooth textures, down-sampling images to
256x256 affect quality minimally. A GAN is trained on the
low-resolution version of the original images. Then a pre-
trained image super-resolution network, SWIN-IR, is used
as a black-box upsampler on the final generated images. It
is possible to train a custom image super-resolution module.
However, due to time, compute resources, and the diversity
of the different NFT collections used in this project, a pre-
trained super-resolution module is preferred.

Because GANs are difficult to train, we aim to use down-
sampled 128x128 versions of the original NFT images as
the training data. Then, we pass these low-resolution gener-
ated images through a pre-trained SR model to reconstruct a
higher resolution 512x512 output image using an SR-GAN
network and treat it as a black-box [7]. Due to limited com-
puting resources, we train each GAN separately on each
NFT collection to reduce the time needed for convergence
and reduce the chance of mode collapse during the training
process.

3.3. Training the GAN

Our approach considered many different GAN architec-
tures for generating NFTs with different specifications. In
this project, we explored four different architectures such as
BigGAN6, StyleGAN-XL7, VQGAN8, StyleGAN2-ADA9

as architectures for generating NFT [1, 2, 5, 9]. Their im-

4The orignal authors of BigGAN [1] estimate 24-48 hours to train using
128 TPU cores on 128x128 images, which equates to 24 days of training
time on the 8 TPU cores available on Colab.

5According to the original authors estimates available at
https://github.com/NVlabs/stylegan2

6https://github.com/ajbrock/BigGAN-PyTorch
7https://github.com/autonomousvision/stylegan xl
8https://github.com/CompVis/taming-transformers
9https://github.com/NVlabs/stylegan2-ada-pytorch

3

https://opensea.io/
https://docs.opensea.io/reference/request-an-api-key

plementations are readily available through each author’s
GitHub repository.

Our original approach was to use BigGAN and
StyleGAN-XL exclusively since they are state-of-the-art
models. However, during the project, we realized that these
model architectures were not designed for NFT collections.
NFT generation is highly irregular compared to natural im-
age generation using ImageNet, CIFAR, FFHQ, CelebHQ,
etc. This is because NFTs have a very regular global spatial
structure, very smooth colors, limited variation in textures,
and very low noise levels compared to natural images.

This section considers different ways of training GANs
and describes some shortcomings of using GANs for gener-
ating NFTs. These architectures were implemented sequen-
tially throughout the project as we searched through differ-
ent methods to solve the failure modes of GAN training on
our data.

After the ground truth and NFT data sets were com-
piled, we center-cropped non-square images and downsam-
pled the source resolution to 128x128 using OpenCV and
Lanczos interpolation.

3.4. BigGAN

Our first attempt was to train BigGAN on Cryptopunks,
one of the most simple NFT collections (see Figure 1a).
We used BigGAN-Tensorflow as an starting point [1].10

After a significant amount of hyperparamater tuning, such
as changing the generator learning rate, loss function and
Adam beta parameters, we found that BigGAN was too un-
stable for our small batch sizing of 64 128x128 images and
would constantly diverge as seen in Figure 1c. Based on
these results we decided to retire BigGAN and move to a
more contemporary architecture that is more robust.

3.5. Stylegan-XL

Since StyleGAN-XL has the ability to train a class con-
ditional dataset and is shown to work on large diverse image
datasets. We attempted to train a model that learns how to
generate 12 NFT collections and 6 wiki-art collections si-
multaneously. Each collection was treated as its own class.
Since we could only manage a batch size of 12 using our
compute resources not even one example per class could
be optimized over per batch, directly leading to complete
mode collapse shown in Figure 2. After training for 120
hours, progress was no longer being made and we decided
to adjust our approach to handle each NFT collection indi-
vidually. Another approach would be to use gradient ac-
cumulation to artificially increase our batch size, however
this would slow down training time by a factor proportional
to the amount of gradient accumulation. We also trained
StyleGAN-XL with default hyperparameters on the Azuki
collection, which performed better than training on a large

10https://github.com/taki0112/BigGAN-Tensorflow

class-conditioned dataset, however still faced the issue of
mode collapse.

The problems we faced when using these to models on
small subsets of data are

• Training on multiple collections of class-conditioned
datasets requires too much computational power given
our limited resources

• There is little semantic similarity between NFT collec-
tions, thus leading to mode collapse within each col-
lection.

• NFT collections are highly structured. Images have
very similar spatial structure and limited texture vari-
ation within a collection, leading to the discriminator
easily overfitting.

• Training on individual datasets (less than 10k images)
always leads to mode collapse as the discriminator and
generator for BigGAN and StyleGAN-XL are too ex-
pressive, even under different learning rate specifica-
tions.

3.5.1 StyleGAN2 with Data Augmentation

To combat the issue of mode collapse on small datasets,
we resort to GANs with lower expressive power than the
architectures considered above. Furthermore, we focus on
GAN architectures designed to generate images from small
datasets. StyleGAN2 with Adaptive Discriminant Augmen-
tation (SG-ADA) is a GAN architecture that is designed to
generate images from a small set of training images.

For our architecture, we used a scaled-down version of
the original StyleGAN2 architecture that better captures the
capacity of our downsampled images. This is done by halv-
ing the size of the feature maps within the network as sug-
gested in [5]. This has the benefit of faster training and re-
duces the probability of overfitting. We also select a subset
of the data augmentations used in SG-ADA that are most
relevant for NFT training. In particular, we only use color
transformations, frequency filtering, and additive noise aug-
mentations. Other augmentations such as horizontal flip and
cutout are not suited for NFT training as images within a
single NFT collection that we considered always face the
same way.

Two other discriminator regularization mechanisms are
paramount to our approach to avoid mode collapse during
the training process. The first is to adjust the R1 regular-
ization parameter during training to R1 = 200 (or γ) to
slow down the discriminator gradient updates when observ-
ing the true data to delay the discriminator from overfitting.
The default heuristic for setting the R1 parameter is given
by γheuristic = 0.0002w · h/B with a suggested range of
[γheuristic/5, γheuristic · 5], where w is the width and h is

4

the height and B is the mini-batch size. This leads to initial
value of γ = 0.8192 which is far too little regularization
for our dataset and leads to the discriminator overfitting and
mode collapse during the training process.

The second approach is to delay the discriminator from
updating for the first 10,000 steps as proposed in the imple-
mentation of [2]. Furthermore, we use an increased learn-
ing rate and smaller batch size during the first half of the
training process for faster convergence before moving to a
default learning rate and batch size.

We believe that our solutions to the GAN training pro-
cess are incredibly dependent on the type of data we are
training on. NFT data behaves very differently from nat-
ural landscapes and faces that most GANs are fine-tuned
to recreate. Specifically, due to the low amounts of spatial
and textural variation within a single NFT collection, the
discriminator learns much quicker than the generator, lead-
ing to mode collapse. The bag of tricks we implement here
takes from many ideas we have seen across different GAN
implementations.

With a mini-batch size of 16 using 256x256, training
on one GPU using mixed-precision training, we achieve a
training speed of 23.30 seconds per 1000 images (k/img)
with a total GPU memory load of < 8GB as measured us-
ing the NVIDIA System Management Interface. The ap-
proximate training time for 5000 k/img iterations is 32
hours, which is well within a feasible computational budget
for training GANs.

We used a smaller capacity generator and discriminator
network compared to the original StyleGAN2, where the
feature maps in the synthesis network are size 128 instead
of 512 as in the original StyleGAN.

3.6. Using CLIP to guide generation

CLIP is used as a black box to assess the least distance
between an input image or text chosen by the user and the
generated image from our trained generator. To generate an
image that has the most semantic similarity to the inputs, we
used the L2 loss function between the CLIP embeddings of
our generated image and the input image. We then use this
score as a loss to optimize the latent vector that is used to
generate our image. To do this, we first embed the guide
image using CLIP. Then we embed the generated image us-
ing CLIP and calculate the L2 loss between the embeddings
of the generated image and the guide image. We then use
the Adam optimizer with a learning rate of 10−3 and opti-
mize over the latent-space vector to generate an image that
is closest to the guide image. Different types of loss func-
tions between embeddings can be used to score the similar-
ity between the guide image and the generated image, such
as the L1 loss or cosine similarity. The CLIP model that
we used was a pretrained CLIP model with ResNet-50 from
OpenAI.

4. Results
4.1. Comparison of GAN architectures

Figure 4 show the generator and discriminator losses at
different steps of the training process for the StyleGAN-XL
and StyleGAN-ADA models that we trained in the project.

There are two clear patterns to these plots. First, in Fig-
ure 4 we can see that the StyleGAN-XL models all fail to
converge. The generator loss is very large, and the discrim-
inator loss is very small, a typical sign of mode collapse as
the discriminator loss, and generator loss diverge. The dis-
criminator loss drops to values close to zero at the ≲ 300
steps. The StyleGAN-ADA model with R1 regularizations
of 100 and 400 both display good characteristics

Figure 5 show the Fréchet Inception Distance (FID) at
different steps of the training process and also at different
wall times during training. The FID score is the squared
Wasserstein metric between two multidimensional Gaus-
sian distributions. This is a way of comparing the statistics
of generated samples to real samples and is a commonly
measured metric to score the quality of a trained GAN [3],
a lower score indicates better quality generated images.

The FID scores for StyleGAN-XL trained on the com-
bined NFT collections, Azuki collection, and Haki collec-
tion failed to decrease over the training process. StyleGAN-
ADA trained on the Haki collection for R1 values of 100,
and 400 show a decreasing FID score throughout the train-
ing process. Moreover, since we used a smaller generator
and discriminator network, the training process is faster.
The lowest FID score is achieved by our StyleGAN-ADA
network with R1 = 100, with an FID score of 13.2 in
32 hours of training time on a single GPU. When training
StyleGAN-XL on the Azuki collection for 72 hours, the
lowest FID score achieved was 67.66.

4.2. Image Super Resolution

To upsample the 128x128 and 256x256 NFTs created
by the GANs to 512x512 and 1024x1024, respectively, us-
ing one of four pre-trained image super-resolution mod-
els SwinIR, SwinIR-Large, BSRGAN, and Real-ESRGAN
[7,12,13]. We found qualitatively that SwinIR-large gener-
ally performed the best and preserved detail without apply-
ing too much smoothing to the image. BSRGAN tended to
shift the style of the image to look as though it is a water-
color painting and smoothed the image substantially more.

4.3. Image generation

Figure 6 show the results of our image generation proce-
dure using a picture of Donald Trump as a target image. We
can see that the generated image mimics some of the quali-
ties in the original image. Namely, the generated image has
white hair, yellow portion in the background, open mouth,
and similar clothing.

5

Figure 7 shows the results of our image generation using
the text input ‘blue shirt pink hair’ as a target text. The
figure shows that the generated image after the optimization
procedure matches the target description even though the
initial images do not resemble the target text.

5. Conclusion
In conclusion, we have created an end-to-end system for

generating NFT’s from images and text at high resolution.
In the project, we train multiple GANs on NFT collections
and address the failure modes of training GAN’s on these
types of images. Our final model achieves an FID score
of 13.25 and takes ≲32 hours to train on a single GPU.
We do this with computationally feasible budget and our
final model’s training time takes around 32 hours on one
GPU. We envision our model having applications to avatar
generation based on input images or text.

5.1. Potential ethical concerns of the project

We uncovered some ethical concerns during this project,
which we will discuss in this section. There are two main
ethical concerns that we discovered. First, the property
rights of NFT collections are unclear at this stage, and
training a neural network to reproduce an individual’s
artwork may pose ethical issues. However, due to the
anonymity of NFT ownership through the blockchain, there
is a limited legal risk of reproducing artwork. Second,
we see these systems as potentially harmful, especially
in generating digital artwork that most closely resembles
an input image. There are potential use-cases to inflict
harm to individuals by generating derogatory artwork of a
person, accentuating unpleasant characteristics of a person,
or artwork that caricatures offensively.

5.2. Future work

In the future we would like to improve our pipeline by
creating a web interface where people can log in and au-
tomatically generate the images they need for a small sub-
scription fee. This could not only be useful for NFT gen-
eration but for stock photos and marketing resources. We
would also like to get access to more computational re-
sources to train a class-conditional network that does not
exhibit mode collapse.

6. Contributions
Overall, we equally contributed to this project and note

that the major contributions made by each person was.
Contributions made by Alex Kashi were:

• Web scraping OpenSea

• Compiling a Dataset for all NFTs

• Training BigGAN

• Training Stylegan-XL on (All NFTs, Apes, Haki, and
Azuki)

• Obtaining training metrics

• Writing half the report

Contributions made by Geoffrey Liu were:

• Investigating potential of mode collapse

• Training StyleGAN-ADA on Haki collection and gen-
erating outputs from the model.

• Using CLIP to guide the generation of images

• Exploring the latent space of the GAN.

• Implementing the image super-resolution model

• Writing half the report and plotting loss and FID
scores.

All work that isn’t listed in the contributions was equally
divided.

6

(a) CryptoPunks Original (b) CryptoPunks BigGAN Training (c) CryptoPunks BigGAN Diverge

Figure 1. BigGAN training on Cryptopunks dataset, results in collapse, due to inferior unstable architecture and small batch size

(a) NFT Original Collections (b) Collapsed StyleGAN-XL after 0.5 kimg

Figure 2. StyleGAN-XL class conditional inputs (a) and outputs (b) for both figures columns 1-5 are part of one collection while columns
6-9 are part of another collection, and each row is a separate collection.

(a) Example StyleGAN-XL output trained on Azuki collection for 72h,
with a FID score of 67.66

(b) Example StyleGAN-ADA output trained on Haki collection for
32h, with a FID score of 13.23.

Figure 3. Comparison of generated images from StyleGAN-XL and StyleGAN-ADA. We can see that StyleGAN-ADA generates higher
quality and much more diverse images with less training time.

7

Figure 4. Discriminator, generator and combined loss during the training process for different GAN architectures. We can see that the
StyleGAN-XL models exhibit failure modes in training, the generator loss increases quickly and the discriminator loss decreases to 0
very fast. StyleGAN-ADA for both R1 specifications of 100 and 400 exhibit better loss progression throughout training as the loss of the
generator and discriminator are balanced.

Figure 5. Fréchet Inception Distance scores for different GANs versus the number of steps. Each step is equivalent to training on 1000
images. We show the wall time of the different models we trained in hours on the left plot. We see that SG-ADA outperforms SG-XL
in both FID and FID scores per step. We can see that SG-ADA converges faster with R1 = 100, indicating that R1 = 400 may over-
regularize the discriminator. SG-XL on the combined NFT dataset, Azuki, and Haki all fail to converge and experience mode collapse
during the training process, which can be seen by the failure of the FID scores to decline during the training process.

8

Figure 6. Image generation using CLIP and a picture of Donald Trump as the target image. The first image from the left is the target image,
and the second image is the generated image from the GAN at initialization. The rightmost images show the output image at the end of the
optimization procedure. The images in between are evenly spaced snapshots over the optimization steps.

Figure 7. Image generation using CLIP and the first row uses the text target ’male blue shirt pink hair’ and the second row uses the
text target ’female blue shirt pink hair.’ The leftmost image is the generated image from the GAN at initialization. The rightmost image
shows the output image at the end of the optimization procedure using the 1000 steps of Adam. The images in between are evenly spaced
snapshots over the optimization steps.

(a) 256x256 GAN output (b) 4x BSRGAN [13] (c) 4x Real-ESRGAN [12] (d) 4x SwinIR-Large [7]

Figure 8. A comparison of different image super-resolution techniques for up sampling 256x256 images by 4x

9

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan.

Large scale gan training for high fidelity natural image
synthesis, 2018. 2, 3, 4

[2] Patrick Esser, Robin Rombach, and Bjorn Ommer.
Taming transformers for high-resolution image syn-
thesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 12873–12883, June 2021. 3, 5

[3] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. 5

[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. Progressive growing of gans for improved
quality, stability, and variation, 2017. 2

[5] Tero Karras, Miika Aittala, Janne Hellsten, Samuli
Laine, Jaakko Lehtinen, and Timo Aila. Training gen-
erative adversarial networks with limited data, 2020.
3, 4

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adversarial
networks, 2018. 2

[7] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. Swinir: Image
restoration using swin transformer, 2021. 2, 3, 5, 9

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning trans-
ferable visual models from natural language supervi-
sion, 2021. 2

[9] Axel Sauer, Katja Schwarz, and Andreas Geiger.
Stylegan-xl: Scaling stylegan to large diverse datasets.
arXiv preprint arXiv:2202.00273, 2022. 2, 3

[10] Divya Saxena and Jiannong Cao. Generative adver-
sarial networks (gans) challenges, solutions, and fu-
ture directions. ACM Computing Surveys (CSUR),
54(3):1–42, 2021. 2

[11] Antonio Torralba, Phillip Isola, and William F. Free-
man. The Tiny Book of Computer Vision. MIT, 2020.
2

[12] Xintao Wang, Liangbin Xie, Chao Dong, and Ying
Shan. Real-esrgan: Training real-world blind super-
resolution with pure synthetic data. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 1905–1914, 2021. 2, 5, 9

[13] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu
Timofte. Designing a practical degradation model for
deep blind image super-resolution. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 4791–4800, 2021. 2, 5, 9

A. Appendix

10

Figure 9. Supplementary figure: Comparison of image superesolution on different resolution input images. The top row uses a 32x32
input, the middle row uses a 64x64 input and the bottom row uses a 128x128 input. The plot on the left is the input image, the second
plot from the left shows upscaled outputs using ESRGAN, the third plot from the left is shows upscaled outputs using SWIN-IR and the
rightmost plot shows upscaled outputs using SWIN-IR XL. Each input image was upscaled to 4x the input size.

11

	. Introduction
	. Related Work
	. Generative Adversarial Networks
	BigGAN
	StyleGAN + StyleGAN-XL

	. Image super-resolution
	. CLIP – Connecting Images and Text

	. Approach
	. NFT data collection
	. Determination of input image size
	. Training the GAN
	. BigGAN
	. Stylegan-XL
	StyleGAN2 with Data Augmentation

	. Using CLIP to guide generation

	. Results
	. Comparison of GAN architectures
	. Image Super Resolution
	. Image generation

	. Conclusion
	. Potential ethical concerns of the project
	. Future work

	. Contributions
	. Appendix

