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Abstract
Neural abstractive summarization models are
able to generate summaries which mimic hu-
man references well in fluency. However, sum-
marization models face issues with preserv-
ing the factual accuracy of the source docu-
ment, which is a critical metric in downstream
tasks and a major limiting factor of safe real-
world applications of these models. One ap-
proach is to pipeline a separate factual correc-
tor model (FCM) at the end of some summa-
rization model. The FCM then corrects fac-
tual errors in the generated summary based on
the content of the source document. However,
existing FCMs are trained on errors specific
only to entities in the summary. In this pa-
per, we aim to improve upon existing FCMs
by using a novel approach based on seman-
tic triples to artificially perturb the data used
in training to account for predicate errors, a
type of error that the current FCMs fail to cor-
rect. We study the performance of our model
trained on this data through empirical analysis
using the XSum dataset alongside several well-
known metrics for summary quality and factual
correctness. Our results demonstrate that our
model not only successfully corrects predicate
errors but also generates higher quality sum-
maries relative to existing FCMs with respect
to the aforementioned metrics.

1 Introduction
Abstractive summarization – the task of generating a
summary of a source document – is a well studied
problem in natural language processing (NLP), with
widespread applications ranging from assistance with
medical queries to commercial convenience for newslet-
ters, books, scientific journals, and other literature [19].
Many papers have found that transformer sequence-to-
sequence (seq2seq) models are able to demonstrate flu-
ency and grammatical correctness in the summaries they
produce. However, human evaluations of these machine
generated summaries have found that they often fail to
factually represent the content in the original source doc-
ument, sometimes up to 30% of the time [3, 2, 7, 14, 8].
Different types of factual errors have been documented

for a wide variety of summarization models, including
contradiction of the original meaning, erroneous fabrica-
tion of words, erroneous entities, and errors in sentence
predicates, among many others [13].

Much of the previous literature (see Section 2) is
concerned with correcting entity errors, which refers
to corruptions of a key subject in a summary, typically
a noun/pronoun, or of surrounding descriptors, such
as numbers or dates [2]. However, in this paper we
will focus on a more intractable type of factual error
known as a predicate (or relation) error. These errors
are distortions in phrases (known as predicates) that
semantically link two key subjects or objects, destroying
or even inverting their commonsense meanings. In this
sense, relation errors are more difficult to correct than
entity errors, which can leverage the power of current
named entity recognition models to pinpoint the exact
word location at which the error occurs.

To this end, we utilize the information extraction tool
OpenIE [1], which extracts semantic triples from articles
in the form of (subject, relation, object), representing
common errors involving relations that may appear in
generated summaries. We propose a novel perturbation
mechanism that provides a gradient of semantic replace-
ments to the relations extracted by OpenIE, using this to
generate a dataset of corrupted summaries mixed with
gold, ground-truth summaries. To obtain our model, we
train a BART denoiser [10] on this perturbed dataset
such that our model inputs a draft summary and its
source document, outputting a factually corrected sum-
mary. In order to comprehensively capture our model’s
performance on the factual correction task, we manu-
ally evaluate a random sample of corrupted summaries
that were corrected by a state-of-the-art baseline and
our trained model. In addition, we utilize the renowned
ROUGE [12] alongside FactCC [9] and FEQA [5] as
metrics for syntactical quality and factual content re-
spectively. Our experiments demonstrate that our model
can successfully identify and rectify relation errors in
summaries, resulting in high quality summaries that
outperform the baseline in each of the aforementioned
metrics.

2 Related works

Recently, [17] developed a comprehensive typology of
factual errors that arise in summarization, identifying



predicate, entity, and out-of-article errors as the most
prevalent sources of factual error in machine summary
their typology generalizes previous ones proposed by
[14, 8] as it provides a more fine-grained deconstruc-
tion of the different sources of factual summarization
errors. The authors identify six main types of factual
errors that appear in summarization: Entity, Predicate,
Circumstance, Coreference, Discourse-Link, and Out-
of-Article. A description of these errors can be found in
Table 1.

Error Description

Entity (20%) Entities in the summary are incorrect
Predicate (15%) Summary predicate is inconsistent

with the article
Circumstance
(15%)

Predicate descriptors (e.g. location,
time) are incorrect

Coreference
(<2%)

Incorrect pronoun reference

Discourse-Link
(<2%)

Incorrect temporal/causal link be-
tween statements

Out-of-article
(30%)

Contains information not present in
the article

Table 1: Types of factual errors in summarization and
how prevalent they are, according to analysis of machine
generated summaries of the XSum dataset by [17].

Much of the existing work in factual correctness for
abstractive summarization can be conceived as address-
ing one or more of these types of errors. In particular,
previous works have mainly addressed factual correc-
tion with respect to entity, out-of-article, circumstance,
and to some extent, coreference errors while ignoring
predicate/relation and discourse link errors [20, 2]. We
believe that this is mainly because entity, out-of-article,
and circumstance errors are easy to detect, and data
augmentations that create entity-based corruptions in
summaries can be easily generated due to wide-spread
availability of entity-recognition models that are able to
identify entities, pronouns, dates, etc.

While our focus on predicate errors is largely a novel
direction, the vast prior literature still offers key in-
sights towards formulating and evaluating our approach.
This prior literature falls into two main categories: one
aims to design neural architectures tailored to correcting
factually incorrect summaries while the other aims to
design metrics that accurately reflect the factual consis-
tency of summaries with their sources.

2.1 Models for Generating Factual Summaries
One approach to enhancing network architectures for
factual consistency is to incorporate factual information
into the embeddings within the transformer seq2seq
encoder-decoder that generate a summary to begin with.
In [3], the authors propose a dual-attention seq2seq
model that conditions summary generation on both the
original source document alongside extracted factual
information. [20] constructs a knowledge graph from
factual relations, using a graph attention network to

create embeddings that are subsequently included within
the decoder attention network that generates summaries.

[20] also introduces another component to the neu-
ral architecture known as the Factual Corrector Model
(FCM) that templates the design for our own model.
Rather than influencing the initial generation of sum-
maries, the FCM is an independently trained model
whose task is to correct draft summaries if factually
erroneous. In this way, we can reframe the problem
of generating factually correct summaries as a pipeline
of neural models which includes a summary genera-
tion phase and a summary correction phase. This idea
is extended in [4], whose model is fine-tuned as a de-
noising autoencoder to recognize entity-based errors.
This is further developed in [2], where the authors pro-
pose a BART-based model for factual error correction
fine-tuned on corruptions involving erroneous entities,
numbers, dates, and pronouns.

For model training, [15] explores data filtering, con-
trastive learning, and joint entity and summary genera-
tion to improve performance. In fact, [15] shows that
a simple filtering of entity hallucinations (entities that
appear in the summary but do not exist in the source)
reduces entity error by twenty percent, a technique we
incorporate into our own training methodology.

2.2 Factual Correctness Metrics

On the evaluation side, many papers utilize ROUGE
[12] as a baseline metric. However, ROUGE evaluates
token-based accuracy but is not as effective at measur-
ing factual accuracy. [9] proposes FactCC, a weakly
supervised BERT-based model that is pretrained on
an artificially-generated dataset of transformed sum-
maries from the CNN/Dailymail dataset, and its ex-
tension FactCCX, which uses additional span selec-
tion to improve the classification of summaries and
provide explainability. FactCC shows correlation with
human-based evalution – however, [20] shows that its
performance may be degraded when applied to differ-
ent datasets. [5] and [18] introduce FEQA (Faithfulness
Evaluation with Question Answering) and QAGS (Ques-
tion Answering and Generation for Summarization), re-
spectively. Both are question and answer models, which
extract question and answer pairs from the summary and
then compares these answers against answers extracted
from the source article in order to determine factual
accuracy. Given a summary sentence, FEQA first pro-
duces a list of questions asking about key information
in the sentence and their corresponding answers. Then
a QA model is used to predict answers from the source
document. Comparing the average F1 score against the
“gold” summary reflects how faithful the summary is.
The higher the score is, the more consistent the summary
is with the source document. Although these metrics
generate significantly improved correlation with human-
based evaluation, they are also more costly to train and
use.



3 Approach

We use the post-editing factual correction model (FCM)
framework [20], [2] to design our model for correcting
predicate and relation errors. These types of models
take a given summary along with the source, and output
a factually corrected summary. Our model is trained on
a set of corrupted summaries from the XSum dataset.
These corruptions are generated through perturbations
of the relation triples generated by OpenIE.

3.1 Perturbation Generation

To compel our model to adequately correct for predi-
cate and relation errors, we first use Stanford’s OpenIE
[1] to generate a semantic triple (s, r, o) consisting of a
subject s and object o (both typically descriptive spans
around nouns), along with a relation r that is a predi-
cate phrase establishing dependency between s and o.
These relation triples form the basis of our predicate
and relation perturbation strategy. In our approach we
consider three types of perturbations: a) S-O Swap, b)
Naïve Semantic Tree Search, and c) Smart Swap.

The S-O Swap interchanges the subject with the
object in the relation triple, inducing the mapping
(s, r, o)→ (o, r, s). In our experimentation, these type
of perturbations assist in teaching the model the sequen-
tial dependency between subjects and objects, rather
than simply associating the set {s, o} with r.

The other types of perturbations directly target rela-
tions and are of the form (s, r, o) → (s, r′, o), relying
on our Semantic Tree Search (STS): a novel method
for generating a gradient of word-based semantic sub-
stitutions. For the STS we utilize WordNet [6], an open
source database that groups words into sets of synsets,
or conceptually aligned synonyms. Given a word, we
generate a set of synonyms and antonyms, representing
opposite sides of a semantic gradient. Choosing one
of these sides at random and selecting a random synset
within, we traverse a minimal spanning tree of related
synsets up to random depth, giving a replacement word.
By iterate this process for a random number of times,
we are able to generate vast variety for replacements
that maintain the same semantic context.

Naiv̈e Swap simply replaces an arbitrary verb, ad-
verb, or adjective from the summary with a replacement
obtained from STS. Smart Swap extracts relation triples
from the summary and replaces at most four verbs, ad-
verbs, or adjectives found in the associated relation,
fundamentally corrupting the commonsense content of
the summary. All verb tenses are corrected to match
that of its predecessor.

3.2 Model

3.3 Datasets

We perform data augmentation and train our model us-
ing the benchmark dataset XSum [16], which contains
227K news articles and their corresponding human ref-
erence summaries.

Type Example

Original Fugitive US whistleblower Edward Snowden
is still in the transit area at Moscow airport,
Vladimir Putin has confirmed.

S-O Swap Fugitive US whistleblower Vladimir Putin
is still in the transit area at Moscow airport,
Edward Snowden has confirmed.

Naïve
Swap

Fugitive US whistleblower Vladimir Putin is
still in the reports area at Moscow airport,
Edward Snowden has confirmed.

Smart
Swap

Fugitive US whistleblower Vladimir Putin is
no longer in the transit area at Moscow air-
port, Edward Snowden has confirmed.

Table 2: Example relation perturbations.

3.4 Model Implementation

Through the artificial data perturbation process we are
provided with a data triplet, (D,S,Sc), which corre-
sponds to the source document D, the original summary
S and the corrupted summary Sc. Given this data triplet,
the training object is to recover the true summary S
given the original source document and the corrupted
summary (D,Sc). To analytically solve this problem,
we can express this as maximising a the likelihood of
P(S | Sc,D) using an encoder-decoder architecture. To
do this, we concatenate the summary with the original
document and feed the concatenation as input to the
model.

We used a pre-trained BART model [11] which is pre-
trained as a denoising Seq2Seq encoder-decoder model.
The model inputs are the source document, D and the
corrupted summary, Sc (which are inputted to the model
with a separator token between them) and trained to
recover the original summary, S . Random noise such as
deletion and repetition of random tokens is applied to
10% of the inputs for the model as the BART model is
trained using these types of noising during pre-training.

3.5 Training process and hyper-parameters

We train our model using our three proposed corrup-
tions, the S-O, Naiv̈e, and Smart Swaps. Following
the perturbation frequency from [2], these corruptions
comprise of 30% of the summaries in the data used to
train the model. We also corrupt 10% of summaries
through back-translation to introduce variation in the
vocabulary used within the summary without changing
the semantic meaning of the summary. The rest of the
summaries, 60%, are not explicitly corrupted, however
each summary has a 10% chance of random noise token
corruption, where 80% of these (8% total) has one of
their tokens deleted and 20% (2% of total summaries)
having one token duplicated.

A learning rate of 5× 10−5, with a polynomial learn-
ing rate scheduler and 2000 warm-up steps to train the
model for a total of 5 epochs. We used HuggingFace’s
pretrained BART-base model, which took 16 hours to
fine-tune on one GPU.



3.6 Baseline Factual Corrector Model
For evaluation comparison, we also train a baseline
factual corrector model (EntitySwap) found in [2]. Their
corruptions only included entity and circumstance-based
corruptions, such as entity, pronoun, date and number
swaps. Since no model checkpoints are given by the
authors, we trained this model using the same hyper-
parameters and corruption process described in 3.5.

4 Experiments
In order to evaluate our model, we created a set of 1,147
corrupted summaries from the XSum test dataset us-
ing our perturbation methods. Of these, we chose 100
summaries for each type of corruption and allowed our
model and the baseline model to attempt to correct these
summaries by feeding in the corresponding concate-
nated summary and document.

We perform three types of model evaluations to
demonstrate the efficacy of our model as opposed to
the baseline, as well as issues that may arise when eval-
uating summaries using metrics based on current factual
summarization methods. The three evaluations we will
consider in this section are as follows:

• Using common factual accuracy metrics to evaluate
our model’s predictions against baseline model and
reference summaries

• Evaluating FactCC’s ability to detect predicate er-
rors

• Manually evaluating our model’s ability to correct
predicate errors against the baseline

4.1 Metrics
The first type of evaluation is to benchmark our model
to commonly used factual accuracy metrics ROUGE
[12], FactCC [9], and FEQA [5]. This evaluation does
not, and is not meant to, prove or disprove the accuracy
or effectiveness of the model we proposed as ROUGE
is not a measure of factual consistency. Rather, we view
this evaluation as an interesting observation that we can
interpret in the context of our next two evaluations.

ROUGE-1 ROUGE-2 ROUGE-L

Corrupted 0.94 0.83 0.89
EntitySwap 0.93 0.84 0.90
Our Model 0.96 0.92 0.95

Table 3: ROUGE and ROUGE-L metric scores for
corrupted summaries, as well as our model’s correc-
tions and EntitySwap’s corrections, compared against
the ground truth.

Table 3 reports ROUGE-1/2/L F1 scores for the sum-
maries generated by both models on the 300 sample
summaries forming the test set, as well as the original
corrupted summaries, against the reference summaries

provided by the XSum dataset. 1 The results demon-
strate that the baseline model does not show much im-
provement above the corruptions, while our model does,
which indicates that our model may be more effective
in correcting predicate-based errors than the baseline.

FactCC FactCCX FEQA

EntitySwap 0.16 0.30 0.19
Our Model 0.21 0.30 0.20

Table 4: FactCC, FactCCX and FEQA scores for sum-
maries generated by our model and EntitySwap.

Table 4 reports FactCC scores for the our model and
the baseline. Our model demonstrates a significant im-
provement in FactCC score over the baseline model.
However, FactCCX scores for the two are identical.

In addition to FactCC and FactCCX, we use FEQA,
which utilizes question answering to score the factual
correctness of a generated summary against its corre-
sponding original document. From Table 4 we can see
that our model receives a higher FEQA score than the
baseline model. In order to determine whether FactCC,
FactCCX or FEQA can detect predicate errors, we turn
to our next evaluation metric.

4.2 Factcual Consistency Evaluation

The second type of evaluation is to demonstrate whether
FactCC and FEQA detect predicate errors when scor-
ing summaries. We construct a simple test, where we
calculate the FactCC score and FEQA score for the cor-
rect summaries and the predicate or relation perturbed
summaries.

FactCC FactCCX FEQA

Corrupted 0.14 0.29 0.19
Gold Standard 0.22 0.31 0.23

Table 5: FactCC, FactCCX and FEQA scores for our
corruptions and the gold truth summaries.

Table 5 reports FactCC, FactCCX and FEQA scores
for the corrupted summaries in our test set, as well
as their corresponding references. The differences in
scores demonstrate that FactCC and FEQA can detect
predicate-based factual errors, while FactCCX struggles
to reflect predicate-based errors. From this conclusion,
we can say that the difference in FactCC and FEQA
scores in Table 4 shows that our model improves upon
the baseline model in terms of factual accuracy.

1Since corrupted summaries only change a couple tokens
in the ground truth summaries, our ROUGE scores are on
the higher end. On generated summaries, our model keeps
nearly the same ROUGE scores as baseline summary generator
model as it is a factual corrector model, so we do not report
these.



Corrupted/Changed Correctly Corrupted/Unchanged Corrupted/Changed Incorrectly Uncorrupted/Unchanged

Smart Swap (EntitySwap) 3 41 6 50
Smart Swap (Our Model) 24 17 9 50
Naive Swap (EntitySwap) 3 42 5 50
Naive Swap (Our Model) 26 20 4 50
S-O Swap (EntitySwap) 4 19 27 50
S-O Swap (Our Model) 34 3 13 50

Table 6: Manual evaluation of our model against the baseline for smart, naive, and subject-object swaps. In each
category, 100 samples were chosen, and 50 of them were corrupted while the other 50 were not. This table displays
the number of corrupted summaries that were changed correctly, incorrectly, and not changed at all for both models,
as well as the number of uncorrupted summaries that remained unchanged.

4.3 Manual Evaluation

Finally, we manually evaluate our model’s ability to
correct predicate errors. In order to do this, we take
the 300-sample test set of articles. For each of the 100
smart, naive, and subject-object swapped summaries,
we randomly choose 50 of them to revert back to their
uncorrupted versions to determine whether our model is
able to leave the uncorrupted summaries unchanged. We
compare how many summaries our model corrects to
how many summaries are corrected by the baseline post
error-corrector model trained purely on entity errors.

Table 6 shows the results from the comparison be-
tween the entity-detecting baseline model and our
model. We count the number of summaries that were
corrupted and changed, left alone, or changed in a way
that was incomplete or incorrect, as well as the num-
ber of uncorrupted summaries that were left unchanged.
First, we see that our model and the baseline model
both do not change any uncorrupted summaries, thus
showing that our model does not sacrifice accuracy on
uncorrupted summaries.

Additionally, our model presents a striking improve-
ment over the baseline for all three types of corruptions.
Specifically, the baseline model changes at most 4 out
of 50, or 8%, of corrupted summaries correctly, while
our model changes at least 24 out of 50, or 48%, of
corrupted summaries to their original meaning. We also
note that the baseline model is largely unable to de-
tect smart and naive swaps, whereas it is able to detect
subject-object swaps, but changes most of the corrupted
summaries incorrectly.

Table 7, Table 8, and Table 9 show example corrup-
tions and the corresponding fixes by our model and the
baseline EntitySwp model. These results demonstrate
that our model is able to correct these corruptions back
to their original meaning, sometimes through replacing
the original verb from the ground truth summary and
sometimes through finding a synonym for the original
verb. In contrast, the baseline model is unable to return
any of the corrupted example sentences to their correct
meanings – in the case of the smart and subject-object
swapped summaries, it introduces descriptors that con-
tain false information, and in the case of the naively
swapped summary, it actually flips the verb’s meaning.

5 Conclusion
In this paper, we propose a novel method of generating
summary perturbations that directly target relations. We
use these corruptions in the context of a BART denois-
ing task, training a factual corrector module to correct
machine-generated summaries that contain relation er-
rors. We compared our model to a previous factual cor-
rector model (EntitySwap) and found that we achieved
higher ROGUE scores as well as FactCC and FEQA
scores. In addition, we found that our factual corrector
was much more capable at correcting relation errors of
each type that we generated artificially, without forcing
corrections on already correct summaries. In the future,
we plan to explore whether including entity corruptions
along with relation corruptions in the BART training
set improves performance as compared to using two
pipelined factual correctors per error type. We also plan
to conduct more testing to evaluate the performance of
our model relative to state-of-the-art factual abstractive
summarizers.
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Sentence

Source Writing in the Wall Street Journal, Mike Pence said the Religious Freedom Restoration
Act (RFRA) had been "grossly misconstrued" as anti-gay. . . Signed into state law last
week, the bill prevents the state from forcing people to provide services they say are contrary
to their religion.

Gold Standard The governor of Indiana has defended a new law that has unleashed a wave of condemnation
across the country.

Corruption The governor of Indiana has settled a cubic yard law that has unleashed a wave of condem-
nation across the country.

EntitySwap The governor of Indiana has settled a civil rights law that has unleashed a wave of condem-
nation across the country.

Our Model The governor of Indiana has defended a landmark law that has unleashed a wave of
condemnation across the country.

Table 7: Example correction on a smart swap corruption. Our model is able to amend the corruption by replacing
the verb and using a synonym for the original adjective, while the EntitySwap baseline model is unable to change
the verb and uses an adjective that changes the meaning of the sentence.

Sentence

Source Mr Oyston sued Stephen Reed over material posted on a fans’ webzine, Back
Henry Street, in June 2015. Mr Reed’s website posting claimed the club chairman
entered into a foul-mouthed rant at him in public, held a gun in such a way as
to make Mr Reed believe he was about to be shot at... [The judge] ordered Mr
Reed to pay Mr Oyston £30,000 and his legal costs.

Gold Standard Blackpool Football Club’s chairman Karl Oyston has won £30,000 in libel
damages from an abusive fan who claimed Mr Oyston threatened him with a
shotgun.

Corruption Blackpool Football Club’s chairman Karl Oyston has existed £30,000 in libel
damages from an abusive fan who claimed Mr Oyston threatened him with a
shotgun.

EntitySwap Blackpool Football Club’s chairman Karl Oyston has been ordered to pay
£30,000 in libel damages from an abusive fan who claimed Mr Oyston threatened
him with a shotgun.

Our Model Blackpool Football Club’s chairman Karl Oyston has received £30,000 in libel
damages from an abusive fan who claimed Mr Oyston threatened him with a
shotgun.

Table 8: Example correction on a naive predicate swap corruption. Our model corrects the nonsensical verb created
by the corruption by using a synonym, while the entity model actually changes the sentence to have opposite
meaning from the original.



Sentence

Source Arsenal dominated with Gervinho failing to hit the target from a good position
and Jake Kean making several key saves. Tomas Rosicky hit the bar after the
break but the Championship side scored when Kazim-Richards followed in on
Martin Olsson’s shot. . . Blackburn are yet to concede in the FA Cup this
season and have now reached the quarter-finals for the first time since 2007
and sit six points off the play-off places in the Championship.

Gold Standard Colin Kazim-Richards’s late goal stunned Arsenal as Blackburn Rovers reached
the FA Cup quarter-finals.

Corruption Colin Kazim-Richards’s late goal stunned Arsenal as FA Cup quarter reached
the Blackburn Rovers -finals.

EntitySwap Colin Kazim-Richards’s late goal stunned Arsenal as the FA Cup quarter-
reached the Blackburn Rovers semi-finals.

Our Model Colin Kazim-Richards’s late goal stunned Arsenal as Blackburn Rovers reached
the FA Cup quarter-finals.

Table 9: Example correction on a subject-object swap corruption. Our model is able to reverse the swap, while the
EntitySwap baseline model is not only unable to do so, but also adds false information into the sentence.



A Impact Statement
Our model (and BART-based factual corrector models in general) can be applied to a variety of different settings
in which summarization of articles or documents is necessary, ranging from medical documents [19] to news
articles, as discussed in our paper. Our paradigm for generating perturbations can be used on any dataset to generate
corruptions. Moreover, our approach is such that a factual corrector trained according to our data augmentation
method can be appended at the end of any current summarization model.

Our model presents an improvement on a previously-unexplored space of factual errors that are nonetheless highly
prevalent [17]. Its effectiveness in detecting and fixing predicate errors presents a step forward in combating the
factual inaccuracies that can prevent the safe deployment of abstractive summarization methods in real-world settings.
There are, however, potential risks to utilizing a factual corrector model to post-process generated summaries. For
one, a factual corrector model runs the risk of introducing further inaccuracies into a generated summary. We see an
example of this in our comparison to the baseline EntitySwap model, which can often change descriptors to include
falsified information, rather than fixing predicate errors. While our model improves upon the baseline in terms of
the number of summaries changed correctly and incorrectly, improvement upon the baseline does not indicate that
our model is ready to be deployed immediately. Additionally, training on one dataset – in this case, XSum – means
that our model best internalizes the summary style of gold standard summaries from that dataset. In order for it to
be more extensible, more extensive data augmentation may be required.

We also note that there is a risk that our proposed relation-based data augmentation methods can be adopted to
automatically corrupt short summary-like texts to generate misleading news article headlines, or even generate false
relations between a patient and their diagnosis.

Additionally, our paper brings up the yet-answered question of a metric on which we can evaluate factual accuracy.
While we argue that our perturbations are simple enough that the output of our model can be manually evaluated,
this process is neither scalable nor extensible to more complex factual error correction tasks. Examples annotated
by [17] often consist of multiple different types of errors combined, and they are often ambiguous. Evaluation of
summarization models and factual correctors by Amazon’s Mechanical Turk is still a method favored by many
researchers, as metrics are often insufficient on their own to capture all types of errors and provide explainability
[8]. However, the widespread use of Mechanical Turk necessitates that evaluators are fairly compensated and also
questions how many different evaluators must look at each example in order to prevent a biased evaluation from
influencing model performance measurements. In the long term, solving this problem would require creating better
factual accuracy metrics, which introduces further trade-offs. Still, training more comprehensive and accurate
factual accuracy metrics often requires high amounts of computing power.

Finally, on a larger scale, since models such as ours are not perfect and we do not possess foolproof metrics
for evaluating factual accuracy, application to real-world settings introduce a dilemma: should summaries that are
machine-generated or factually corrected be labeled, or presented differently to the general public? This question
should be answered and addressed before a model like ours is used in a real-world setting.


