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Abstract—Since the release of DALLE-2 and MidJourney,
large generative image models have become popular among both
technical and non-technical users for creative purposes. Recently,
one such model, Stable Diffusion, was open-sourced – however,
access to the models is limited to those who have high-end
graphics cards or pay a fee for each image to be generated
on a server. In this paper, we explore methods for compressing
and accelerating Stable Diffusion, resulting in a final compressed
model with 80% memory size reduction and a generation speed
that is ∼ 4x faster, while maintaining text-to-image quality.

I. INTRODUCTION

Diffusion models (DMs) use diffusion processes to de-
compose image generation into sequential applications of
denoising autoencoders. Different variations on the DM archi-
tecture – Imagen (Google) , DALL-E 2 (OpenAI), MidJourney,
and Stable Diffusion – have recently achieved state-of-the-art
synthesis on image data and have become some of the most
popular architectures for image-to-image (img2img) and text-
to-image (txt2img), among other types of synthesis such as
image outpainting and infilling [1]–[4]. Various attempts at
making these models accessible to a broader audience include
various API’s allowing for straightforward generation on a
small scale.

Notably, Stable Diffusion – a text-to-image generator –
has since been open-sourced, allowing users to recreate such
groundbreaking results with access to internal architecture
and fully trained weights. However, this capacity is bounded
largely by memory requirements, with weight size ranging
from 4.27 GB - 7.7 GB (depending on model version), mean-
ing Stable Diffusion is locally inaccessible to most devices.
In fact, non-technical users must pay per image for running
the model externally to their hardware, with generation time
on, e.g. Colab, requiring 30-60s to generate a single prompt-
to-image query.

To remedy such barriers to broader access, we present meth-
ods to compress memory size and accelerate the generation
of diffusion models, demonstrating their efficacy on Stable
Diffusion. In particular, we explore zero-shot post-training
quantization. Crucially, the patchwork of distinct composite
architectures in Stable Diffusion motivates a mixed-precision
quantization. To leverage this insight, we explore model sen-
sitivities to such techniques on a subunit-by-subunit basis. To
augment generation speed, we supplement the Stable Diffusion
source code with Flash Attention [6]. Finally, we present a
compressed and accelerated version of Stable Diffusion that

maintains comparable image quality with a weight size of
0.75 GB and an image generation time of 2.05s (using an
RTX3090) – demonstrating over an 80% reduction in storage
and ∼ 4x reduction in generation time. Such developments
promise broad commercial accessibility to the powerful re-
sources of diffusion models.

II. BACKGROUND

A. Diffusion Models

Diffusion models have recently overtaken the long-time
dominance of generative adversarial networks to become the
new state-of-the-art family of deep generative models for
image generation. These models are a family of probabilistic
generative models that progressively destroy data by injecting
noise, subsequently learning to reverse this noising process
to generate images [7]. During training, the model learns via
a forward diffusion process, where Gaussian noise is added
iteratively to the image vector. As the number of steps increase,
the original image becomes indistinguishable from Gaussian
noise. During inference time, another architecture – typically
a denoising auto-encoder – learns to reverse this process by
subtracting noise given a time step to reconstruct the original
image. In diffusion models such as DALLE-2 and Imagen,
the diffusion process takes place in image-space, leading to a
large inference cost due to high image dimensionalty.

B. Latent Diffusion (LDM)

Rather than train the diffusion process on pixel-space, the
authors in [8] propose to first train a variational auto-encoder
to compress images into a latent space, next training a diffu-
sion process on this space to generate a ‘latent-space’ image.
The encoding is then passed through a variational autoencoder-
decoder architecture to obtain an image. This allows a drastic
training and inference speedup, since the diffusion process
takes place on the 64x64 latent space, rather than a 512x512.

Figure 1 shows the exact architecture of the LDM that we
consider in this paper. The diffusion process takes place in a
64x64 latent space, the decoder then decodes the output latent
vector into a 512x512 image. The text-to-image generation
in Stable Diffusion can be broken down into three distinct
stages: a text encoder, the de-noising text-conditioned U-Net,
and decoder of the variational auto-encoder.



a) Text/Image encoder: The text/image encoder is a
frozen pretrained CLIP ViT-L/14 text encoder [5]. CLIP
(Contrastive Language Image Pretraining) consists of an image
encoder and text encoder. The model is provided by OpenAI,
trained with a contrastive loss to map text inputs and image
inputs onto the same space using a novel dataset of 400 million
image-text pairs. During LDM inference, this CLIP encoder
embeds the text prompt into a 77x768 dimension text-vector.
Since CLIP maps image and text inputs into the same space, it
is easy to apply our methods for img2img generation, although
in this paper we only consider txt2img generation.

b) Denoising text-conditioned UNet: The denoising text-
conditioned UNet is the backbone of the diffusion model, and
it is the only module in the LDM architecture used in the
diffusion process. The UNet takes in three main inputs:

• 64x64 time-step embedding which tracks the current
time-step in the diffusion process

• 64x64x3 ‘latent’ image vector, which is decoded into a
512x512 image by the decoder.

• 77x768 text embedding from the CLIP model, which is
used to condition the UNet

The LDM UNet has the same architecture as the traditional
UNet [9] with two minor changes, the first change is the
addition of a time-step embedding which keeps track of the
current iteration of the diffusion process, the second change
is that before each downsample and upsampling layer in the
UNet, there is a cross-attention layer between the latent image
input and the text embedding.

c) Varational autoencoder decoder: The final output of
the diffusion process is passed into the Variational Autoen-
coder Decoder, which decodes the 64x64x3 latent image
vector to a 512x512x3 image. The variational autoencoder
is pretrained on a 2.3B subset of the LAION-5B data set (a
dataset that consists of 5.85 billion image-text pairs), filtered
for high quality images. The encoder of the variational auto-
encoder is only required during training of the UNet and not
used during txt2img or img2img inference.

III. PROBLEM STATEMENT

With this diverse composite architecture of Stable Diffusion,
we are motivated to specifically tailor the tools of quantization
to optimize model compression while maintaining text-to-
image generation quality. Our project goal is to achieve such a
compressed diffusion model to under 1 GB with at least a 2 –
5x speed up in inference. To this end, we partition the diffusion
architecture into well-defined subunits, or blocks, calculating
relative L2 error at the output as a proxy for local quantization
tolerance.

The insights gleaned from this sensitivity exploration in-
forms contender compressed models by mixed-precision quan-
tization, which we test against well-established metrics for im-
age quality: Inception Score (IS), Frechet Inception Distance
(FID) and the Kernel Inception Distance (KID) [4], [10], [11].
The FID score is a distance metric between distributions of
images, typically between a ground truth set with associated
text captions and a set generated from such captions, and is

Fig. 1: Stable Diffusion Model Architecture during model
inference.

most prominently used in diffusion model benchmarking. The
IS and KID capture similar sentiments of distribution distance,
and we refer the reader to the citations for further explana-
tion. Our final model demonstrates one strong example of
sensitivity-informed mixed-precision quantization, for which
we also benchmark according to these metrics, but relative to
the performance of the original Stable Diffusion model.

IV. METHODS

A. Quantization

Model weights are typically stored in a 32-bit floating
point format. This level of precision is not strictly necessary,
motivating conversion methods to n-bit floating point numbers.
At base level, given numbers in the interval [0, 1], a uniform
quantization acts as Qn-bit : i → round(i·(2n−1))

2n−1 , rounding i to
the nearest n-bit wide interval. We examine the efficacy of the
following extensions of this quantization.

a) Uniform Quantization: This applies an n-bit quantizer
to an arbitrary tensor of weights w by the following formula:

wq = 2max(|w|)
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)
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scaling w down to [0, 1], quantizing, and rescaling.
b) Stochastic Quantization: This adds stochastic noise to

uniform quantization by adding N(n) to the quantizer input,
with N(n) = σ

2n−1 and σ ∼ Unif(−0.5, 0.5).
c) Piecewise Linear Quantization: Weight distributions

typically conform to a center-peaked symmetric shape, such
as a Gaussian or Laplacian. To take advantage of this structure,



instead of quantizing by taking the entire weight range into
account, splitting the weights into a tail and center region and
quantizing separately gives less quantization error, as rounding
to the nearest n-bit number is more precise in smaller ranges.
To this end, let σ be the standard deviation of w. Then
if x = max(|w|)

σ , we can obtain the approximately optimal
breakpoint b = σ · log (m · x+ b) as calculated by [13],
where m and b are constants. Then we perform stochastic
quantization on the intervals [−max(|w|),−b], [−b, b], and
[b,max(|w|)] separately. In experimentation and consultation
with [13], we set m = 0.8030 and b = −0.3167.

The variable quantization grid (6) suggests that piecewise
linear quantization (PWLQ) offers the best performance guar-
antees per a given model size, so this is the quantization
method we employ for the remainder of the paper.

B. Mixed-Precision Quantization Search

Uniformly quantizing a model to ultra low-precision can
cause significant degradation in the quality of generated
images. This issue can be addressed with mixed-precision
quantization, where each layer in the model is quantized
with a potentially distinct bit precision. One challenge here is
selecting the optimal precision per layer, which becomes expo-
nentially harder as the number of layers increases. Moreover,
since the inference for LDM’s is a combination of multiple
neural architectures, the search becomes again harder since
there are different inputs and outputs at each stage. In our
paper, we calculate the sensitivity of each layer to different
levels of quantization to understand which layers can tolerate
lower bit precision, and which layers require relatively high
bit precision.

Previous work in mixed-precision quantization focuses on
relatively simple architectures, mostly working on ResNet50
and similar image-classification models [12]. These models
have a quick-to-calculate and well-defined objective measure,
classification accuracy. We found that these methods were
impossible for our model since both inference and scoring
of model outputs were very costly.

a) Quantization Sensitivity: To identify which blocks –
composed of 5-10 consecutive layers 1 – are most sensitive
to quantization, we sectioned the model into three compo-
nents, the text encoder, the U-net, and the decoder, where
each component contains several blocks. We subsequently
quantized each block to 4 and 8 bits using piecewise linear
quantization while leaving every other block at 32 bits. We
then calculated the relative L2 error at the output at each of
the three components as.

L = 100%

√∑n
i=1(v

i
n-bit − vi32-bit)

2∑n
i=1(v

i
32-bit)

2

The loss is then averaged across 8 validation prompts. From
this information, we can identify blocks which outputs are
highly sensitive quantization. Highly sensitive blocks should

1Specific block composition can be found in our source code
prune names2.py

be reverted to higher precision, while blocks more amenable
to quantization should be further reduced.

b) Flash Attention: Within the diffusion process, there
are many transformer blocks, which allow for the conditioning
of the diffusion process to the input text. These transformer
blocks are slow and memory-hungry because the complexity
of self-attention and cross-attention are quadratic with respect
to the size of the latent space. To address this issue, we replace
the standard attention calculation in the model (quadratic with
respect to latent size) with the Flash Attention, proposed by
[6]. Flash Attention is an IO-aware exact attention algorithm
that uses tiling to reduce the number of reads and writes
between GPU high bandwidth memory (HBM) and GPU on-
chip SRAM. To implement Flash Attention, we utilize [6], who
implements the algorithm for CUDA devices with a PyTorch
API.

V. RESULTS

a) Mixed-Precision Sensitivity: By performing the block-
wise quantization sensitivity analysis as detailed above, the
results detailed in Fig 5. The U-net, specifically the center of
the U-net is most amenable to quantization only resulting in a
0.1% change to the output of the decoder when quantizing to
4-bits. Another critical observation is that the decoder is highly
sensitive to quantization resulting in over 100% relative error
at the output when quantizing the last layer to 4-bits. However,
quantizing the first layer of the decoder to 4-bits from 8-bits
makes almost no difference. The text-encoder’s quantization
error remains constant at about 10% error when quantized
to 4-bits. The results from this figure will go on to inform
our mixed precision quantization strategies for the rest of the
report.

b) Generative Quality: We now observe some tradeoffs
between chosen mixed-precision quantizations, where the U-
Net is quantized one degree (i.e. 1 byte) further than the rest
of the model, as informed by the prior paragraph.

To measure the generative quality after quantization, we use
the Inception Score (IS), Frechet Inception Distance (FID) and
the Kernel Inception Distance (KID). To calculate these scores,
we randomly select 4096 image-text pairs from MS-COCO
2014. As each image in the dataset is paired with 5 corre-
sponding text captions, we randomly select one text caption
to represent the image. We then use our model to generate
images using these text prompts and score these generated
images against the real images. The MS-COCO images were
then resized to 256x256 by first resizing the short edge to
256 while keeping the aspect ratio, then center-cropping the
resized image to obtain a 256x256 image. A comparison of
these scores by bit precision can be found in Table I. We
can see that relative UNet quantization outperforms full model
quantization on most metrics by roughly keeping size intact,
but full 4-bit quantization of the UNet cascades to many errors.

c) Relative Error: Although measuring the absolute im-
age quality with respect to real images from MS-COCO allows
us to quantitatively assess the generative quality of the model
after quantization, these types of metrics are not suitable for



TABLE I: Image quality vs bit precision
Note: The higher score of stochastic and deterministic uniform
quantization are presented in the ‘Full model quantization’ and
‘UNet quantization’, while the Final Model uses PWLQ.

Models
Image Quality

IS FID KID Size (GB)

Full model 32bit 33.63 23.92 0.0058 4.1

quantization 16bit 34.95 25.09 0.0029 1.92
8bit 32.69 26.64 0.0042 0.96

UNet 16bit-UNet 33.85 24.02 0.0058 2.24
quantization 8bit-UNet 32.86 26.21 0.0037 1.12

4bit-UNet 1.382 125.27 0.3930 0.56

Final Model
Quantization Our model 32.06 25.51 0.0035 0.76

comparing the similarity of the outputs of the quantized model
and the original model. Therefore, calculating the output quan-
tization error, i.e. the difference in output between the model
after quantization and the original 32-bit model, we consider
two metrics: the relative FID score (rFID), relative KID score
(rKID) and the mean-squared error between the latent vectors
of the quantized model and 32-bit model (MSE). The rFID
score is the FID score between the set of images generated
by the quantized model and the 32-bit model using 4096 MS-
COCO prompts. The MSE is simply the mean-squared error
between the final latent vectors (output of the UNet) of the
quantized and 32-bit model. Because the auto-encoder decoder
provides a continuous mapping between latent and pixel space,
it is valid to assume that small differences in the latent space
vectors correspond to small differences in the generated image.
We are able to see a clear downward trend in all these scores,
and when we quantized too far (4bit-UNet), there is a sharp
degradation in our metrics.

TABLE II: Relative image quality vs bit precision
Note: the models presented here are the same as in Table I

Models
Latent quality

rFID rKID rMSE

Full model
32bit 0.00 0.00 0.00

Quantization
16bit 15.53 0.0005 1.447
8bit 17.67 0.0012 1.483

UNet 16bit-UNet 15.82 0.0005 1.401

Quantization 8bit-UNet 16.61 0.0007 1.449
4bit-UNet 361.50 0.3767 93.58

Final Model
Quantization Our model 16.71 0.0008 1.423

d) Final Model: For the final model, we selectively
quantize all input layers and middle blocks in the UNet
to 4-bit using PWLQ (from 3 this portion has the least
deviation from 8-bit quantization), and all the convolution
layers to 4-bit using PWLQ, with the rest of the model weights
are quantized to 8-bit using PWLQ. This mixed-precision
quantization scheme is chosen by inferring the sensitivity of
layers to quantization. Our final model performs similarly to

a full 8bit PLWQ quantized model, with 0.2GB weight saving
due to mixed-precision quantization. It also outperforms full
8bit deterministic and stochastic quantization.

e) Compressed: After applying our quantization meth-
ods, our final model achieves a weight size of 0.762GB
which is a ∼5.5 times decrease in the original weight size
while remaining true to the original full-bit model outputs.
We achieved this by applying 4-bit PWLQ on the UNet input
and middle blocks, 4-bit PWLQ to convolutional layers in the
model, and 8-bit PWLQ quantization for all other layers.

f) Speedup in inference: From both quantization of
weights and using Flash Attention algorithm within the trans-
former blocks, we achieve a lower bound inference speedup
of ∼4x from 7.6 seconds to 2.05 seconds on the hardware
we tested on (RTX3090), compared to full 32-bit inference
without Flash Attention. This is a lower bound speed-up since
our hardware is optimized only for 16-bit (half-precision) mul-
tiplications and accumulation calculations. Using specialized
hardware (and software) that can take full advantage of 8-bit
and 4-bit to compute units will further increase the inference
speedup.

VI. CONCLUSION

A. Summary

In this project, we conducted a subunit-by-subunit test of
quantization sensitivity as proxied by the relative L2 error
at the block output, informing which subarchitectures of the
multifoliate Stable Diffusion model were most amenable to
low precision quantization. We found that the middle layers of
the U-Net are least sensitive to quantization, while the decoder
is most sensitive. These varying tolerances informed a final
model that quantized all middle to early layers of the U-Net
as well as all convolutional layers to 4-bit, while quantizing
the remainder of the model to 8-bit. Our final model achieves
an 80% memory size reduction and ∼ 4x generation speedup,
while maintaining metric scores roughly equivalent to far more
precise quantizations.

B. Future research

Since we began the project, further improvements to Stable
Diffusion have been released. These improvements include
better optimizations during training (Stable Diffusion v2), the
release of a paper by Apple engineers porting the Stable
Diffusion model natively on Swift allowing inference on Apple
Neural Engine 2, as well as a distilled student model that can
generate similar-quality images using ∼ 1− 4 diffusion steps
(while the current model requires 50 steps) which increase
inference speed by 10x.

Given this, some future areas of research could explore:
• Hardware level optimizations in porting our model

weights onto iOS devices, such as adding Flash Attention
to their version of the model.

• Applying our quantization methods to the distilled student
model, allowing a considerable inference speed-up.

2https://machinelearning.apple.com/research/stable-diffusion-coreml-apple-
silicon



Fig. 2: Blockwise relative L2 error, for text encoder compared
with 32-bit reference, averaged over 8 samples

Fig. 3: Blockwise relative L2 error, for U-net compared with
32-bit reference, averaged over 8 samples

Fig. 4: Blockwise relative L2 error, for decoder compared with
32-bit reference, averaged over 8 samples

Fig. 5: Blockwise Error
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APPENDIX A
GROUP CONTRIBUTION STATEMENT

A. Geoffrey

• Implement Flash Attention
• Write batch-image generation script
• Benchmark speed and memory requirements
• Quantization (Stochastic & Uniform)
• Mixed-precision Quantization experiments
• Metrics (FID, IS, KID, rFID, rKID, rMSE)
• Calculating image quality scores and quantization errors

on MS-COCO dataset.
• Experimental design and going through the LDM code-

base to understand how SD works.
• Final project writeup

B. Aayush

• Stochastic and Uniform Quantization and Comparison
Analysis

• Piecewise Linear Quantization
• Unstructured Pruning
• Optimal Model Search
• Final project writeup

C. Alex

• Project Proposal
• Per-layer quantization error-analysis
• Structured Pruning

B COMPARISON OF QUANTIZATION METHODS

A comparison of uniform, stochastic uniform, and piecewise
linear quantization can be found in 6.



Fig. 6: Comparison of Quantization Methods. Example generated figures are given for piecewise linear (PLWQ), uniform, and
stochastic quantization per given model sizes, labeled at the top of columns. The first two model sizes are given by full 16-bit
and full 8-bit quantization. The third is 4-bit for convolutional layers and 8-bit elsewehere; the fourth is 4-bit convolutional
and transformer layers and 8-bit elsewhere, and the final size is 4-bit convolutional, transformer, and middle U-Net layers,
with 8-bit elsewhere. We stop before full 4-bit quantization as that outputs null images for all methods.

C FINAL MODEL IMAGE GENERATIONS

Here (7) we display the capacity of our model to generate
images from text competitive with the original stable diffusion
model.

D FURTHER FUTURE WORK

The current implementation of Stable Diffusion on iOS
devices requires lazily loading the Text Encoder, UNet and
Decoder and aggressively unloading each module after each
step. This is due to the limited memory on these devices
and impacts inference speed considerably. Using our reduced
model, as well as Flash Attention, it would be possible to
run inference without loading and unloading each model
component.



Fig. 7: Comparison of 32-bit output and our mixed 4bit and
8bit precision model on some sample prompts. Our model
consists of 4bit convolutional layers using PLWQ, 4bit UNet
Input Block and Middle Block layers using PLWQ and 8bit
PLWQ quantization for all other layers.
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