
Sequentially training diverse deep ensemble members

Geoffrey Liu
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

geoffreyliu@fas.harvard.edu

1 Introduction

Ensembles of deep neural networks are becoming increasingly popular since they have shown
improvements in accuracy and uncertainty over a single neural network. However, independent
training of each ensemble member doesn’t guarantee diverse predictions and the user has to rely on
the randomness of initialization, mini-batching in stochastic gradient descent, and the number of local
minima in the loss surface to achieve diverse ensemble members. Moreover, independently training
deep neural networks in an ensemble often leads to members with very similar functional forms, this
leads to minimal improvements in the quality of the ensemble prediction and uncertainty estimates.

Recent work has introduced interesting ways of forcing diversity between ensemble members through
the addition of a repulsive force or diversity term into the neural-network loss function during training.
This is a novel method to enforce functional diversity between ensemble members during the training
process. Most of these diverse ensemble methods use joint or end-to-end training which leads to
issues of dominance (one ensemble member is much better than the rest), over-reliance (ensemble
performance degrades when members are removed, or failure to converge (Webb et al., 2019).

In this project, I propose a new way of maintaining functional diversity during the training of deep
neural network ensembles, which to my knowledge, has not been investigated before. I propose
to sequentially train ensemble members, with each member forced to be different to each previous
ensemble member through including a repulsive force into the training procedure. We analyze the
performance of our ensembling method on different regression and classification tasks using synthetic
data. We also compare the performance of our ensembling method on image classification tasks using
MNIST and FashionMNIST.

2 Background and Literature Review

In this section, I provide a background into deep ensembles and frame where the project lies within
the current literature.

2.1 Deep Ensembles

Ensembles where multiple deep neural networks are trained individually and independently (deep
ensembles), and their predictions averaged, have been widely successful for improving both the
accuracy and predictive uncertainty of single neural networks. Lakshminarayanan et al. (2017) are
often referenced as the baseline for ensembles of deep neural networks. They show that a simple
collection of independently trained neural networks with the same architecture can achieve higher
accuracy and reasonable uncertainty quantification compared to a single deterministic network.
These ensembles have become ubiquitous, both in practice and the academic literature, because of
their conceptual simplicity and ease of implementation. They provide a quick and simple boost in
accuracy over a single network when required, for example, state-of-the-art benchmark results are

Preprint. Under review.



often achieved by ensembles of neural networks. At the time of writing, the top performing models
ImageNet (Wortsman et al., 2022) uses ensembles to achieve their highest score.

Deep ensembles also provide good uncertainty quantification and are still widely used as the bench-
mark to beat (Nado et al., 2021). One reason is that deep ensembles provide an effective mechanism
for approximate Bayesian model averaging over different ‘basins of attraction’, in other terms,
different posterior modes or local optima (Wilson, Izmailov, 2020). Despite this view, independently
trained deep ensemble members often collapse into the same or very similar functional form into
training, which may negatively affect the uncertainty estimates of the ensemble and therefore its
performance for uncertainty quantification.

The uncertainty quantification for deep ensembles relies predominately on:

• the randomness in weight initialization.

• the noise in stochastic gradient descent from random mini-batching.

• the number of local optima in the loss surface of the model.

2.1.1 Adding more randomness

To add more diversity into deep ensemble training, different methods have been proposed that focus
mainly on adding randomness into the other parts of the neural network training process not mentioned
in the list above. Wenzel et al. (2020) propose hyperparameter ensembles, where randomness is
introduced into the hyperparameter used for training each ensemble member, specifically, the dropout
rate and weight placed on L2 weight regularization. Including this additional source of randomization
is beneficial to ensemble training.

Recently, Grewal, Bui (2021) proposed another source of randomization by training deep ensemble
members with different optimization algorithms, and different network architectures (e.g. layer
sizes, activation functions, etc). This can be viewed as an extension of hyperparameter ensembles
by considering the neural architecture and optimization algorithm as a part of the neural network
hyperparmeters. Different optimization algorithms such as Adam and SGD have implicit biases
towards basins with different types of geometric properties in the loss surface. For example, SGD
is biased towards flat basins while Adam is biased towards sharper basins in the loss surface (Zhou
et al., 2020). Using different optimization algorithm to train each member allows for more efficient
exploration of different types of local optima in the loss surface, that deep ensembles already exploit.
The proposal to include different model classes in an ensemble exploits the different types of each
neural architecture and thus may also increases the functional diversity of the ensemble itself.

2.2 Repulsive ensembles

So far, we observe that deep ensembles rely exclusively on randomness of the training process, or
introducing randomness to a set of hyperparmeters used to train each ensemble member. This is to try
and find different local optima in the posterior or loss surface, thus increasing the overall diversity of
the ensemble. Instead of relying on randomness to achieve this affect, a natural idea is to explore the
possibility of explicitly engineering a procedure that forces each ensemble member into a different
regions of the posterior.

Recent work into deep ensembles introduced the idea of adding a repulsive force between ensemble
members to promote diversity between the trained networks. The repulsive force is added as a term
into the loss function, thus forcing each ensemble member to balance fitting the data and maintaining
diversity compared to the other members of ensemble. There are two ways of characterizing the
repulsive force between neural networks. The first is to place a repulsive force on the model
parameters i.e. parameter space or weight space repulsion. This penalizes a ensemble member
when its model parameters (or weights) are close to that of another ensemble member. The second
is to place a repulsive force on the outputs of the neural networks i.e. function space repulsion.
This penalizes one ensemble member when the outputs of the member are close to that of another
ensemble member, thus leading to function space diversity across the ensemble members.

Although function space repulsion and weight space repulsion are equivalent (through some complex
non-linear mapping), this distinction is important in practice. Due to overparameterization of deep
neural networks, models with very different weights may map to the same function thus forcing the

2



weights between ensemble members to differ does not guarantee a functionally diverse ensemble
(D’Angelo, Fortuin, 2021).

Different authors have proposed different ways of characterizing the repulsive force between ensemble
members. D’Angelo, Fortuin (2021) use a kernelized repulsive term, specifically the RBF kernel, in
the gradient descent update to encourage diversity between members. This update rule was inspired
by the update rule by the Stein Variational Gradient Descent (SVGD) (Liu, Wang, 2016), which is a
variational inference algorithm that uses a set of n particles to approximate the bayesian posterior,
where the true posterior is recovered as n → ∞. Loosely speaking, SVGD can be viewed as using n
evenly weighted dirac-delta distributions to approximate the posterior, where the location of each
of distribution is optimized such that the ensemble minimizes the Kullback-Leibler divergence the
posterior. By framing the deep ensemble as the set of particles, D’Angelo, Fortuin (2021) use this to
show that their update rule leads to an ensemble that is a valid approximation the posterior of the
Bayesian Neural Network, in the sense that this ensembles approximates the BNN posterior as the
number of ensemble members grow.

The loss function used to train the ensemble inD’Angelo, Fortuin (2021) is given by,

L =

M∑
j=1

log π(fj | D)︸ ︷︷ ︸
Loss

+
1

M

M∑
j=1

M∑
k=j

k(fj , fk)︸ ︷︷ ︸
Repulsive Force

, (1)

where fj is the outputs jth ensemble member, π(fj | D) is the posterior of the jth ensemble member,
k is a radial basis function kernel.

Webb et al. (2019) characterize the repulsive force between ensemble members in a different manner.
Instead of viewing each ensemble member on its own, they study ensemble training in an end-to-end
framework, treating networks in the ensemble jointly as components of a single larger network. The
authors formulate a loss function that allows the user to control the balance between optimizing for
loss of each individual ensemble members and the function space diversity between the ensemble
members.

The loss function used to train the ensemble in Webb et al. (2019) is given by,

Lλ = λ

M∑
j=1

KL(p∥q̄) + (1− λ)
1

M

M∑
j=1

KL(f∥gj)

=
1

M

M∑
j=1

KL(p∥qj)︸ ︷︷ ︸
Individual Loss

+
λ

M

M∑
j=1

−KL(q̄∥qj)︸ ︷︷ ︸
Repulsive Force

, (2)

where KL(p∥qj) is the KL divergence between the predictions of ensemble member j and the target
distribution (i.e. labels), qj is the softmax probabilities of ensemble member j, and KL(q̄∥qj) is the
KL divergence between qj and the average ensemble prediction q̄.

These two approaches to diverse ensemble training use slightly different methods to characterize
repulsion between ensemble members, Webb et al. (2019) chooses to use the negative Kullback-
Leibler divergence while D’Angelo, Fortuin (2021) uses the radial basis function kernel to characterize
the repulsive force. Although both suggest placing the repulsive force in function space, Webb et al.
(2019) considers the case where each member is repelled from the ensemble mean, while D’Angelo,
Fortuin (2021) choose to repel each member from every other member of the ensemble. Furthermore,
D’Angelo, Fortuin (2021)’s approach considers training in a fully Bayesian manner, where in the
gradient update step, the gradient of the implicit functional prior is also calculated.

Both approaches, however, train the ensemble jointly i.e. each ensemble member is trained together
with all other ensemble members, and the number of ensembles is pre-specified before the training
process. A question that both authors leave for future work is to investigate what happens if the
networks are trained sequentially i.e. the first network is trained and fixed, then a second network is
trained with a repulsive force against all previous network, and so on.

3



3 Our approach to ensembling

3.1 Sequentially training diverse ensembles

In this section, I present our method for training diverse deep ensembles. In my formulation, I use
three alterations from previous methods for constructing deep ensembles, namely,

• Sequential training of ensembles

• Training deterministically and using different repulsive forces

• Adding in a parameter to control the weight of the repulsive force

Incorporating these three elements into the training of our ensemble, we loss function for training our
ensemble is,

Lj
λ = λ ℓ(p∥qj)︸ ︷︷ ︸

Loss

+ (1− λ)
1

j

j∑
k=1

−D(qj , qk)︸ ︷︷ ︸
Repulsive Force

, (3)

where Lj represents the loss function for the jth ensemble member, ℓ(p∥qj) is a loss function between
the target distribution (data), p and the output from the jth ensemble member, qj , and d is a function,
not necessarily symmetric, that scores the distance between ensemble members. The parameter λ
controls the weight placed on fitting the data and the weight placed on functional diversity compared
to the previous ensemble members.

3.2 Explanation of modelling choices

The first choice training process is to consider the sequential training of deep ensemble members
instead of joint training of ensembles. This has two main advantages, the first addresses the issues
faced by Webb et al. (2019); the joint training of ensembles according to Equation 2 can lead to
over-reliance on ensemble averaging, that is, the rapid degradation of the ensemble performance as
individual ensemble members are dropped. Deep ensembles are robust to this phenomenon, since
each ensemble member is independently and thus removing member from the ensemble impacts
the ensemble average minimally. The second advantage to sequential training is that the number of
ensemble members does not need to be pre-specified. Thus, the number of ensemble members can be
increased or decreased during the training process according to the users needs. This may be useful,
especially when the number of ensemble members needed to reach performance saturation is not
known in advance. On the other hand, choosing to train the ensemble in a sequential manner limits the
ability to parallelize the training process as each ensemble member depends on the previous members.
However, this is a minor issue and other forms of deep ensemble methods such as hyper-deep
ensembles also incur this limitation.

The second choice is to train the ensemble deterministically, in the spirit of deep ensembles as
discussed in subsection 2.1, as opposed to approximating the Bayesian Neural Network Posterior as
in D’Angelo, Fortuin (2021). Although, we allow for the use of different types of repulsive forces,
such as a kernelized repulsive force, KL divergence, or even simple cost functions such as the L1 or
L2 cost function.

The third choice is incorporate a weight λ that balances the fitting of the data and the repulsive force
or functional diversity between ensemble members, allowing for a continuous transition between
independently trained deep ensembles (λ = 1) and strongly repulsive deep ensembles (λ = ϵ).

The differences between Equations1, 2 and 3. The repulsive force in my method is applied to all
ensemble members as in Equation 1 as opposed to the ensemble mean. The tradeoff between the
repulsive force and the loss function is explicit as in Equation 2 allowing for easier tuning of the
weight placed on the repulsive force. In Equation 1, the weight placed on the repulsive force is
implicit as during the training process the lengthscale of the RBF kernel changes using a heuristic
based on the median pairwise distance between ensemble members.

4



4 Experiments

In this section, we will detail some of the experiments that we run using our new ensembling method.
We use independently trained deep ensembles, that only differ by initial weight initialization and
random mini-batching to train the ensemble

4.1 Synthetic data

4.1.1 2-D Classification

To test our ensembling method on classification, we generated a simple synthetic classification dataset
with 5 classes. These classes generated using 5 2-dimensional isotropic Gaussian distributions with
a variance of 2, equally spaced apart on a ring of radius 5 around the origin. The dataset used for
training was generated by combining 50 samples from each of the 5 Gaussian distributions.

We trained 100 ensemble members using our ensembling method and 100 ensemble members from a
deep ensemble for comparison. Each ensemble member was a standard multi-layer perceptron with 2
hidden layers of width 50 plus a bias term, and ReLU were used for all activations in the network.
The Adam optimizer with learning rate set to 0.001 was used for training for all ensembles methods.

Our ensemble was trained with the Hellinger distance as the repulsive force, where the repulsive force
is placed on the predicted probabilities after softmax. which is given by Equation 4. This distance is
often viewed as a probabilistic analogue to the euclidean distance.

H(p, q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 (4)

In our classification experiments, it appears that the Hellinger distance performed well however other
distance functions such as the L2 cost, RBF Kernel could be used instead. Furthermore, another
choice is whether to apply the repulsive force to logits directly or to the softmax probabilities.

Figure 1 shows the results of our ensemble method versus a standard deep ensemble. This plot
displays the log-entropy of the ensemble mean, taken before softmax, over the classes. In this plot,
we observe that we are able to use this metric to identify the in and out of distribution areas in this
simple case. We can see that the areas where this metric is larger (red) corresponds to the areas where
we the data do not lie.

Figure 1: Out of distribution detection on 2-D classification task using log-entropy (blue=low,
red=high). The standard deep ensemble is on the left and our ensemble is on the right

5



4.1.2 1-D Regression

In the regression case, we assessed our ensembling method of fitting a simple synthetic regression
dataset. First, 50 x values were uniform randomly generated on the interval [1, 2] and another 50 on
the interval [4.5, 6]. Then the targets were generated using y = x sin(x) + ϵ where ϵ ∼ N (0, 0.2).

Our ensemble was trained with the RBF Kernel as the repulsive force, with lengthscale set to be equal
to 1. We trained 50 ensemble members using our ensembling method and 50 ensemble members
from a deep ensemble for comparison. Each ensemble member was a standard multi-layer perceptron
with 2 hidden layers of width 50 plus a bias term, and LeakyReLU were used for all activations in the
network. The Adam optimizer with learning rate set to 0.001 was used for training for all ensembles
methods.

These results reported in Figure 2 consisting of the mean and percentiles of the predictions from
the ensemble, with different specifications of the repulsive force. The target function is coloured in
red, and the datapoints used for training are displayed in red. The ensemble mean is given by the
black line and the percentiles of the ensemble predictions is given by the blue shaded areas. The
lightest shade of blue shows the (5, 95) percentiles and the darkest shade of blue represents the (45,
55) percentiles of the ensemble predictions.

Figure 2: Predictive means and uncertainties from our ensembling method versus standard deep
ensembles on a synthetic 1-D regression dataset.

We observe that as the the weight placed on the repulsive force increases (λ ↘) the predictive
uncertainties of the ensemble increases. The standard deep ensemble fails to capture the in-between
uncertainty of the gap between the datapoints, while our ensembling method does when λ is suffi-
ciently low. By looking at the plots for the different values of λ, we can observe that our ensembling
method provides greater functional diversity, as measured by the percentiles of the ensemble predic-
tions, compared to the standard deep ensemble. Morover, with λ = 0.5 and λ = 0.25, our ensembling
method captures true function within the 90% prediction interval of the ensemble. Our ensemble
trained with a weak repulsive force, λ = 0.75, and the standard deep ensemble fail to capture the
true function, although the repulsive force does appear to still increase functional diversity as the
prediction intervals in the tails are wider.

6



Before we move on to the next experiment, it is important to note that a kernelized repulsive force
was the only specification that worked in the regression case. Other forms of distance functions
such as the KL-divergence were ill-defined (unless some distributional form over the predictions was
assumed). Using simple cost functions, such as the L1 or L2 cost as a repulsive force did not provide
meaningful results as these distance metrics are unbounded, thus each ensemble member after the
first diverged to ±∞.

4.2 MNIST and FashionMNIST

Next, we investigate the performance of our method on simple image classification tasks. The results
are reported in Table 1. To train our model, we used the Hellinger distance as the repulsive force on
the softmax probabilities using λ = 0.5 as the weight for the repulsive force. We trained 10 ensemble
members using our ensembling method and 10 standard deep ensemble members for comparison.
We observe that our training procedure yields the lowest expected calibration error (ECE) across our
different experiments.

For the model architecture, we used a MLP with 3 hidden layers of width 300, 200, and 100
respectively and ReLU were used for all activations in the network. The Adam optimizer with
learning rate set to 0.001 was used for the optimization procedure.

The FashionMNIST experiments were performed in a similar manner to the MNIST experiments,
the key difference being that we included an extra convolutional neural network architecture for
comparison. The convolutional neural network was a standard LeNet-5, three convolutional layers
with subsampling passed into 2 fully connected layers.1

Dataset Ensemble Accuracy ECE MCE Brier NLL

MNIST (MLP) Deep Ensemble 0.984 0.0053 0.201 0.00240 0.0489
Our Ensemble 0.980 0.0027 0.192 0.00310 0.1242

Corrupted MNIST Deep Ensemble 0.736 0.1995 0.343 0.04489 1.4644
Our Ensemble 0.761 0.1469 0.349 0.03781 0.9184

FashionMNIST (MLP) Deep Ensemble 0.908 0.0939 0.383 0.01502 0.3150
Our Ensemble 0.909 0.0730 0.262 0.01470 0.3508

FashionMNIST (CNN) Deep Ensemble 0.931 0.0701 0.400 0.01120 0.2125
Our Ensemble 0.928 0.0185 0.255 0.01081 0.4059

Table 1: Comparison of deep ensembles and our ensemble on image classification using MNIST and
FashionMNIST

4.3 Out of distribution (OOD) detection on image classifiers

Table 2 and Table 3 shows the entropy of the mean ensemble predictions trained on MNIST and
using rotated MNIST, where each image on the test batch of MNIST are rotated a fixed angle
counterclockwise, SVHN, and FashionMNIST as the OOD datasets.

Table 2 shows that the entropy increases at a much faster rate when the ensemble is trained using our
method for increasing rotations of MNIST. Although, the entropy on the uncontaminated test set is
also slightly higher for our ensembling method versus a deep ensemble. Table 3 also confirm that our
ensemble has higher entropies using SVHN and F-MNIST as OOD datasets.

Figure 3 shows the histogram of entropies instead of the average entropy over the whole OOD dataset.
We see that our ensemble method has a smaller peak around 0 entropy for the OOD data, which
indicates that our ensemble may perform better on OOD detection compared to a standard deep
ensemble.

5 Future work

There are many experiments that are left as future work, for example, we do not believe that our
experiments on the OOD abilities of our ensemble method are exhaustive, and many more metrics

1https://github.com/google/uncertainty-baselines/tree/main/baselines/mnist

7



Metric Ensemble MNIST MNIST (15o) MNIST (30o) MNIST (45o) MNIST (60o )

Entropy Deep Ensemble 0.0267 0.0706 0.2088 0.3831 0.4780
Our Ensemble 0.0329 0.0871 0.2653 0.4922 0.6236

Table 2: Comparison of average ensemble entropies using rotated MNIST as the OOD dataset.

Metric Ensemble MNIST SVHN F-MNIST

Entropy Deep Ensemble 0.0267 0.5025 0.3616
Our Ensemble 0.0329 0.7882 0.4710

Table 3: Comparison of average ensemble entropies using SVHN and FashionMNIST as the OOD
dataset.

could be tested for OOD detection, however, we leave this as future work. Furthermore, for our image
and OOD detection tasks we only considered the case where the repulsive force weight λ = 0.5. It is
unknown at this point in time how our ensemble method varies with different values of λ, or whether
optimizing different values of λ will yield better results.

Although the results ensembling framework are interesting, our experiments mostly consider toy data
and small image datasets. It is unknown whether or not the properties of our ensembling method
extends to larger networks and data. One simple way to extend these experiments is to train our
ensemble on a more complex image classification task such as CIFAR-10/100.

6 Conclusion

In this project, we propose a new method for training diverse deep ensemble members and show
that this framework displays some promising trends and results on synthetic data and small image
classification tasks. Our method indeed increases the functional diversity of the ensemble compared
to standard deep ensemble training, however more empirical analysis is needed to determine the
quality of our approach versus other ensemble methods that have improved upon deep ensembles.

8



Figure 3: Comparison of the histograms of entropies on rotated MNIST with 45o rotation and SVHN.

9



References
D’Angelo Francesco, Fortuin Vincent. Repulsive Deep Ensembles are Bayesian // Advances in

Neural Information Processing Systems. 2021.

Grewal Yashvir, Bui Thang D. Diversity is All You Need to Improve Bayesian Model Averaging.
2021.

Lakshminarayanan Balaji, Pritzel Alexander, Blundell Charles. Simple and scalable predictive
uncertainty estimation using deep ensembles // Advances in neural information processing systems.
2017. 30.

Liu Qiang, Wang Dilin. Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm. 2016.

Nado Zachary, Band Neil, Collier Mark, Djolonga Josip, Dusenberry Michael, Farquhar Sebastian,
Filos Angelos, Havasi Marton, Jenatton Rodolphe, Jerfel Ghassen, Liu Jeremiah, Mariet Zelda,
Nixon Jeremy, Padhy Shreyas, Ren Jie, Rudner Tim, Wen Yeming, Wenzel Florian, Murphy Kevin,
Sculley D., Lakshminarayanan Balaji, Snoek Jasper, Gal Yarin, Tran Dustin. Uncertainty Baselines:
Benchmarks for Uncertainty & Robustness in Deep Learning // arXiv preprint arXiv:2106.04015.
2021.

Webb Andrew M., Reynolds Charles, Chen Wenlin, Reeve Henry, Iliescu Dan-Andrei, Lujan Mikel,
Brown Gavin. To Ensemble or Not Ensemble: When does End-To-End Training Fail? 2019.

Wenzel Florian, Snoek Jasper, Tran Dustin, Jenatton Rodolphe. Hyperparameter Ensembles for
Robustness and Uncertainty Quantification // Advances in Neural Information Processing Systems.
33. 2020. 6514–6527.

Wilson Andrew G, Izmailov Pavel. Bayesian Deep Learning and a Probabilistic Perspective of
Generalization // Advances in Neural Information Processing Systems. 33. 2020. 4697–4708.

Wortsman Mitchell, Ilharco Gabriel, Gadre Samir Yitzhak, Roelofs Rebecca, Gontijo-Lopes Raphael,
Morcos Ari S., Namkoong Hongseok, Farhadi Ali, Carmon Yair, Kornblith Simon, Schmidt Lud-
wig. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. 2022.

Zhou Pan, Feng Jiashi, Ma Chao, Xiong Caiming, Hoi Steven, E Weinan. Towards Theoretically
Understanding Why SGD Generalizes Better Than ADAM in Deep Learning. 2020.

A Appendix

A.1 Overlaps with current research

This project had no significant overlaps with ongoing research. I am doing a project on variational
inference and some research on Neural Linear Models with WeiWei, however none of these have
significant overlaps with what this project.

A.2 Skills developed

One important skill that I developed throughout this project were the ability to understand and read
the literature on deep ensembles. This was challenging at first since there were many metrics and
different ways of training ensembles, and their connections to other types of models e.g. SNGP. The
second important skill that I developed was to code in Jax + Haiku. I found this challenging at first
since Jax jitted functions need to be true functions unlike normal python functions, keeping track of
random number generator keys vs. setting one seed and being done, keeping track of all the states for
ResNet training, and also learning how to manually write the L2 weight regularization while skipping
the batchnorm layer weights. There were alot of headaches however after this project I would say
that I am more comfortable with Jax, and more capabable of using Jax to implement neural network
architectures.

10


	Introduction
	Background and Literature Review
	Deep Ensembles
	Adding more randomness

	Repulsive ensembles

	Our approach to ensembling
	Sequentially training diverse ensembles
	Explanation of modelling choices

	Experiments
	Synthetic data
	2-D Classification
	1-D Regression

	MNIST and FashionMNIST
	Out of distribution (OOD) detection on image classifiers

	Future work
	Conclusion
	Appendix
	Overlaps with current research
	Skills developed


