Sequential Decision Modelling using Structured State

Spaces
Geoffrey Liu Christopher Croft Ana Vitoria Rodrigues Lima
Harvard University Harvard University Harvard University

geoffreyliu@fas.harvard.edu ccroft@g.harvard.edu anavitoria_rodrigueslima®
@fas.harvard.edu

Abstract

Credit assignment in Reinforcement Learning contends with the ability of an agent
to determine the true source of returns from a trajectory of states and actions. This
is known to be a challenging problem, especially as the length of an episode in-
creases. A novel approach to Reinforcement Learning proposed and implemented
by Chen et. al. in their work "Decision Transformer: Reinforcement Learning
via Sequence Modelling" approaches this problem by using a transformer as a
sequence model. By combining the power of the autoregressive transformer ar-
chitecture with "Upside Down" RL, in which we condition on desired reward,
Decision Transformers are capable of attaining state-of-the-art model-free perfor-
mance on several common RL benchmarks. Given the success of this combination
of ideas, attempted to extend this concept by retaining the "Upside-Down" RL
approach, and replacing the sequence model with a promising new architecture, the
Structured State Space Sequence Model (S4). This is a novel architecture which
allows for efficiently modeling sequences much longer than standard transformers.
Preliminary experiments from this project indicate that S4 is able to obtain higher
rewards compared to Decision Transformers.

1 Introduction

The intention of this project is to explore the applicability of sequence models to the problem of
credit assignment in Reinforcement Learning. A policy must be able to recognize which action(s)
influenced future rewards if it is to learn an optimal sequence of actions for performing a task. There
are several settings in which this turns out to be very challenging, specifically when rewards are
sparse and when the environment is highly stochastic. Decision Transformers attempt to tackle this
from a sequence modeling perspective. The idea is that the Transformer architecture is inherently
capable of performing credit assignment through self-attention, which allows them to learn which
actions were critical even amidst sparse or noisy rewards. Still, this work and others are limited by
the information propagation capabilities of the underlying sequence models. Our model exchanges
the transformer-based sequence model in the Decision Transformer framework with an sequence
model that uses structured state spaces, which we call S4DM (S4 decision model). Our preliminary
experiments indicate that S4DM achieves higher rewards and outperforms the Decision Transformer
baseline on three MuJoCo environments, which indicates that S4 may be a better sequence model for
this task.

2 Background

2.1 Decision Transformer

Decision Transformers are an abstraction of the Reinforcement Learning paradigm into a sequence
modeling problem [1]]. Intuitively this seems like a natural fit, as traditional RL policies can be "rolled
out" within an environment to generate trajectories, which are simply sequential tuples of state, action,
and reward. The idea here is that optimal future actions which maximize return can be generated by
a causal transformer conditioned on a target reward, and past states and actions. Key here is both
the novel application of sequential models as well as the idea of conditioning on desired reward.
The intention is that instead of generating actions based on past rewards, the model will instead do
so based on desired future returns. To incorporate this into the Decision Transformer framework,
desired reward-to-go is calculated as R, = ZtT,:t Ty . At test time, starting from a target return of p,
we subtract the reward obtained in step ¢ as p’ = p — r; and feed in p’ as the target reward-to-go in
the next timestep. We can formalize a trajectory at train time, represented as a sequence as:

T = [R1, 81,01, Ra, 52,09, ..., Ry, s7, ar)

Each of reward-to-go, states, and actions are projected into an embedding space by separate learned
linear layers. A positional embedding is also learned to represent the current timestep, and this
embedding is added to each token. In the published implementation, these tokens are then processed
by GPT-2 to predict future actions auto-regressively. In the case of continuous actions, the loss is
simply calculated as the mean squared error between prediction actions and actual actions:

Action predictions are retrieved from the transformer hidden states through a linear action prediction
layer. This leads to the resulting algorithms which are presented using PyTorch-like pseudocode.

Algorithm 1 Decision Transformer

Input: R=reward, s=state, a=action, t=timestep
1: function DECISIONTRANSFORMER(R, s, a, t)
2: p < embed, ()
3: R« embedg(R) + p
4 s < embed,(s) + p
5 a < embed, (a) + p
6: input + stack(R, s,a)
7: hidden_states < GPT2(input).last_hidden_layer
8: a_hidden < unstack(hidden_states).actions
9: return pred_a(a_hidden)
10: end function

Algorithm 2 Decision Transformer: training

1: for (R, s,a,t) € data do

2: optimizer.zero_grad
3 a_preds = DECISIONTRANSFORMER(R, s, a, t)
4 loss = MSE(a_preds, a)
5: loss.backward
6
T

optimizer.step
end for

In comparison to previous methods, Decision Transformer takes a different perspective on how to
generate actions - both in terms of architecturally as well as conceptually. It is common in traditional

Algorithm 3 Decision Transformer: evaluation
1: Initialize: Ry get, S, a,t, done
2: while not done do
3: next_action < DECISIONTRANSFORMER(Rtarget, s,a,t)
4 new_obs, r, done + env.step(next_action)
5 R+~ R-r
6: s,a,t < [s] + [new_obs], [a] + [action],t + 1
7
8:

keep most recent K timesteps
end while

reinforcement learning to parameterize a policy, actor or critic as a sequential model (e.g. RNN,
LSTM, GRU, etc...), which has a similar intention in mind, which is to enable a form of memory to
aid in sequential decision-making. Though these approaches are not reimagining the very approach
to performing RL as Decision Transformer does, they are simply making a decision as to how they
learn within the existing framework. DT is explicitly taking a new approach to generating actions in
a manner that directly leverages the strengths of the transformer architecture in conditional sequential
modeling.

2.1.1 Transformers

The Transformer model was introduced in the landmark paper "Attention Is All You Need" by
Vaswani et. al. in 2017 [7]. Whereas previous sequential models relied on recurrences and/or
convolutions, the Transformer did away with all of that in favor of attention. Here, an encoder maps a
sequence of tokens to a continuous sequence of representations z, and given z, a decoder generates
an output sequence of symbols. The model is auto-regressive, and so at each timestep, it uses the
previously generated symbols in generating the next. A key component of this architecture is the
concept of stacked attention. An attention function is essentially a mapping from a query and a
set of key-value pairs to some output, the purpose of which is to capture the relationship between
components of the input. In the context of language modeling, this works well, as it can explicitly
determine how words in an input sentence relate to each other, which is critical in understanding
language. This same mechanism is why Transformers are a natural place to explore for applications
in RL, as we are interested in how actions and rewards relate to each other, specifically in the context
of the credit assignment problem.

2.1.2 "Upside Down' Reinforcement Learning [S]

In traditional reinforcement learning, we learn to predict the discounted future rewards, given previous
actions and states, and then learn to transform the predicted rewards into actions through a policy.
Upside Down RL (UDRL) skips the intermediary step of predicting a reward, rather it takes a reward
as an input. UDRL takes the state, desired reward, and desired time horizon to achieve the reward
as the input, and learns to output an action. This changes the goal of the learning from maximizing
returns in expectation, to following commands of desired rewards and time horizons. Simply, the
UDRL machine takes in commands in the form of "get so much reward within so much time", and
learns an action consistent with that command.

The innovation in UDRL is turning the problem into a supervised learning problem. The supervised
learning problem takes three inputs: state, desired reward, desired time horizon, and outputs an action.
This leads to two key properties in UDRL. First, the cumulative reward is an input to the agent rather
than a prediction as in value-based RL. Second, the learning is based on optimizing a true supervised
learning objective, as compared to traditional RL algorithms where the targets are non-stationary.

Decision Transformer’s uses a very similar concept to UDRL with two minor changes. First, DT takes
in previous states and actions which changes the reinforcement learning problem into a sequence
prediction problem i.e. given a history of states and actions, and a reward command, what is the best
action. Second, the time-horizons are fixed to be length 1.

2.2 Structured State Space Sequence Model (S4)

[3] tackles the known problem of Long Range dependencies, LRDs. Previous conventional models
such as RNNs, CNNs and Transformers have specific variants for capturing long dependencies,
however they still struggle with 10 000 or more steps being that they struggle from vanishing
gradients. This paper suggests a new method, the S4, which is based on state space models (SSMs), a
concept borrowed from the field of control theory:

2/ (t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) + Du(t)

Given a known and accepted benchmark, the Long Range Arena LRA benchmark [6], S4 is as fast as
several baselines and also outperforms those based on the LRA benchmark.

In [3] they put in place a Linear State Space Layer (LSSL [4]) that gets the benefits of RNN models and
the benefits of how state space models (SSMs) can address the problem of long range dependencies.
Since LSSL has prohibitive computational requirements, they introduce a modification to the concept
of the state space model: the structured state space, S4, [3]]. The structured state space lies on the fact
that they modify the matrices A by decomposing them as the sum of a low-rang and skew-symmetric
term - specifically, they equip S4 with a particular modification of the state matrix A based on the
HiPPO kernel [2]. Thanks to this, S4 is fast as several baselines and also outperforms those based on
the LRA benchmark.

The HiPPO kernel to used to define the matrix A from (1), they discretize this in order to get a
sequence to sequence mapping - this enables the state equation to be a recurrence in x, enabling
the discretized SSM to be computed as a typical RNN. Ultimately, the architecture resulting from
these is a layer of a deep neural network, the S4 layer. The core of the S4 layer is the HiPPO kernel
which captures a structured state space, along with a feed forward network that consists of nonlinear
activations and a linear transformation. What this S4 layer defines is a sequence-to-sequence mapping,
with the familiar shape of (batch size, sequence length, hidden dimensions) - similar to sequence
models like Transformers and RNNs.

3 Structured State Space Sequential Decision Model (S4DM)

The aim of our project is to implement Decision Transformer [1] by replacing the usage of a model
that uses transformer self attention layers in Algorithm [I] with an architecture that uses S4 layers.

Given that [3] shows promising results, such as S4 substantially closing the gap to Transformers for
both generative tasks and classification tasks, we plan to use this architecture in our RL context with
the hypothesis that S4 will handle longer ranges of trajectories. Meaning, we expect that this new
architecture use ‘remember’ longer parts of the input trajectories while generating a new sequence of
actions, thanks to the usage of the HiPPO kernel which compresses history within the model. The
increased "memory" of this model should give it a distinct advantage in assigning credit to critical
actions in a trajectory, allowing it to achieve better performance.

4 Experiments

4.1 Environments

In total, we aim to benchmark results in four environments. The first three environments, Half-
Cheetah, Walker2D and Hopper are coming from the OpenAlI MuJoCo platform. The last and fourth
environment is a directed graph, whose dataset will be a random walk - this has been done by [1] and
we are trying to replicate this as well.

Our experiments will use three MuJoCo environments, HalfCheetah, Walker2D and Hopper, which is
a simple simulated robot designed to mimic motor tasks for humans and animals. The HalfCheetah
environment consists of a two-dimensional two-legged figure that goal is to run forwards and has 17

dimensional state space and an action dimension of 6. The Walker2D environment has 17 dimensional
state space and action dimension of 6, with a goal of walking forwards without falling. The Hopper
environment has an 11 dimensional state space and a 3 dimensional action space, with a goal of
hopping forward without falling. E]All these environments have an unbounded state space, however
the each dimension of the action space is bounded by [—1, 1] and represent the torque applied to the
joints of the robot.

Since we are learning off an offline environment, we use a dataset of trajectories generated by different
agents. We use a dataset of trajectories from sub-optimal agents, we refer to these datasets as,

* Medium: 1 million timesteps generated by a “medium” policy that achieves approximately
one-third the score of an expert policy.

* Medium-Replay: the replay buffer of an agent trained to the performance of a medium
policy (approximately 25k-400k timesteps in our environments).

In total we have six datasets from the combination consisting of medium and medium-replay trajecto-
ries for three environments.

4.2 Experiment details

The experiments we implemented have been to run are to implement ‘our new’ S4DM for Medium
and Medium-replay trajectories in the three aforementioned environments.

Due to the stochasticity that a deep learning architecture from its initialization, we run each experiment
three times with separate seeds and report the mean standard error of the evaluations. For each agent,
we train on 1000 trajectories per iteration, and evaluate on ten (10) episodes after each iteration to
assess the agent’s performance in that environment. We compare results between the S4DM model,
with both a low and high target reward, against the baseline Decision Transformer and a Behavioral
Cloning model in our results. Recall that the Decision Transformer framework utilizes Upside-Down
RL, and so we evaluate performance against a "high" target reward, as well as a "low" target (equal to
half the high target) to compare how target returns affect performance.

4.3 Implementation details

To implement S4DM in the most similar way to baseline DT model, by modifying line 7 of Algorithm
Instead of using GPT-2 as the sequence modelling neural network architecture, we replace this
with an S4 sequence model. Each S4 layer within the S4 model consists of a kernel (i.e. the HiPPO
Kernel) and a feed-forward layer (i.e. linear layer plus activation and dropout) with a skip connection.
The kernel block can viewed similarly to the masked self-attention block in the transformer decoder
within GPT-2. The inputs to the S4 model is exactly the same as the inputs to GPT-2 as in Algorithm
The last hidden layer of the S4 model is taken to be output after passing through all the S4 layersﬂ

The S4 model has many hyperparameters choices, which include the dimension of the kernel state
space[’} the maximum sequence length, number of channels, whether the kernel is bi-directional or
unidirectional, the activation function after the kernel outputs, and the dropout. Similar to the number
of decoder blocks within GPT-2, another choice in the S4 Model is the number of S4 layers.

The dimension of the kernel state space, maximum sequence length control, and the number of
channels control the dimensions of the kernel within the S4 block. Some choices of these hyper-
parameters were clear, such as setting the maximum sequence length to be 1024, larger than the
maximum sequence length in our data, and the number of channels is set to be 1 as the (state, action,
reward) tuple inputs in DECISTONTRANSFORMER are stacked and flattened into a 1-D vector in line

'https://www.gymlibrary.ml/environments/mujoco/hopper/

2Note: in a regular S4 model, the last fully connected layer is trained, however in decision transformer the
outputs of the last hidden layer for both S4 and GPT2 are used directly

3Note: not to be confused with the environment state space

6 of [I] The dropout rate is set to be equal to 0.2 (default), however we note that this is a tuneable
hyperparameter.

The kernel being unidirectional is critical to the implementation, as we do not want information
from future states and actions to leak into the sequence model. The activation function was chosen
to be GELU (Gaussian error Linear Unit) activation which is standard for GPT-2 and [3]] original
implementation of S4 on other tasks. The other hyperparameters, such as the size of the kernel state
space, number of S4 layers are selected via grid search, detailed in the next section.

5 Results

5.1 S4 Sensitivity to Hyperparameters tuning

Since S4 is a new model, it is hard to know the optimal hyper-parameter settings to use for this task.
Therefore, we run a small grid search over the learning rate, the size of the kernel state space, and
number of S4 layers to see which combination provides the highest maximum performance and the
highest performance at the final training iteration. A table of results can be found in[Table 3|

From this, we decide on using as environment Walker2D Medium Replay because this is the most
difficult environment to perform well in our experiments. It is interesting to note that on average
utilizing the higher number of S4 layers and of kernel dimension, the higher the maximum achievable
reward. The best hyperparameters we found were a learning rate of 6.1 x 10~%, a S4 kernel size of
256 dimensions, and using 16 S4 layers in our S4DM model.

We do not believe this is is an exhaustive experiment, however due to limited compute power we
could only spend limited resources searching for optimal hyperparameters, as we have run this grid
search for about 24 hours.

5.2 Comparison of performance of S4 vs DT

Dataset Environment | Target Max | Target Mean || S4DM results | DT results | BC results
Medium Half-Cheetah 5309.38 4770.33 5134.56 4961.148 4437.66
Medium Hopper 3222.36 1422.06 2438.59 1707.403 1893.73
Medium Walker2D 4226.94 2852.09 3787.78 3249.886 3355.53
Medium-Replay | Half-Cheetah 4985.14 3093.29 4654.11 3873.734 -0.95
Medium-Replay Hopper 3192.93 467.30 2686.72 1460.075 1039.16
Medium-Replay | Walker2D 4132.00 682.70 3450.24 2402.301 1010.17

Table 1: Our S4DM model outperforms both Decision Transformer and Behavior cloning across all
environments and datasets with respect the the maximum reward obtained across iterations. All these
experiments have been run for a total of 3 times to ensure accuracy of results. These results are the
average of these three runs per iterations, and the max of these averages. The Target Max and Mean
is the maximum and mean rewards across the trajectories in the dataset

Dataset Environment | S4DM DT BC
Medium Half-Cheetah | 48.2% | 46.6% | 41.6%
Medium Hopper 69.3% | 48.3% | 53.7%
Medium Walker2D 77.0% | 66.1% | 68.2%
Medium-Replay | Half-Cheetah | 43.7% | 36.3% | -0.01%
Medium-Replay Hopper 76.4% | 41.2% | 29.2%
Medium-Replay Walker2D 70.1% | 48.8% | 20.5%

Table 2: Comparison of S4DM, DT and BC using normalized scores. Metric calculated as %expert =
100 - model return - random model return The expert returns can be found in|Table 4

expert return - random model return *

Half Cheatah

20

5000

sssss

200

1000

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 1: Mean returns for S4 (high and low targets), Decision Transformer and Behavior Cloning
trained on medium trajectories.

Half Cheatah Walker2d

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 2: Mean returns for S4 (high and low targets), Decision Transformer and Behavior Cloning
trained on "medium" agent replay buffers

In|Figure 1|and|[Figure 2| we immediately observe the high variance in return from S4 and Decision
Transformer. Both methods comfortably outperform Behavior Cloning, but when considering the
variance, it is hard to definitely determine whether the S4 model is doing better than Decision
Transformer. We suspect that the high variance is due to evaluating on so few episodes (10). The
decision to not perform more evaluation was due to time and resource constraints. What we are able
to determine from these plots is that, at least preliminarily, S4 performs at least as well as DT in
these environments. Combining the slight edge we can see in these plots with the greater maximum
obtained reward over the all evaluations, we have reason to believe this is an interesting alteration to
the DT framework that is worth exploring further.

We believe our results do not fully characterize S4’s performance as a decision model. In our
experiments, we specifically compared S4 to the environments that the original DT model was trained
on. These environments don’t play into the strengths of S4DM as the trajectories on the MuJoCo
were relatively short and can be easily handled by GPT-2. It would be interesting to compare S4DM
and DT on an environment with very long trajectories with lengths greater than 10,000.

6 Conclusion

In this project we explore the applications of sequence models to the problem of credit assignment.
Specifically, we explore and implement the Decision Transformer which uses GPT-2 as a sequence
model in combination with Upside-Down reinforcement learning. We replace the GPT-2 sequence
model with the S4 sequence model to create a new model, S4DM. We then compare the performance
of our model to the Decision Transformer and show that we are able to outperform DT across all
environments and datasets with respect with the maximum reward obtained across iterations.

For future work, it would important to compare the Decision Transformer and the S4DM model on a
wider set of environments, especially environments with long trajectories that Decision Transformer
will struggle. Moreover, we do not believe we have selected the optimal hyper-parameters for the
S4DM model and further tuning can yield better results.

7 Contributions

Geoffrey Liu

Implemented the S4 Model that replaced the GPT-2 model in Algorithm [I]and debugged the
Cauchy kernel CUDA implementation to train our model faster.

Helped to incorporate the S4 Model into the Decision Transformer Training Loop and set
up the S4DM codebase.

Debugged the initial training run of the S4 and identified the correct S4 parameters for
S4DM to work, such as specifying the unidirectional kernel the S4 layer.

Helped to get the initial baseline Decision Transformer and Behavior cloning experiments
using the authors code.

Chris Croft

Implemented the Decision Transformer framework that we swapped S4 into
Helped to incorporate the S4 Model into the Decision Transformer Training Loop
Debugged training run of S4

Hyperparameter tuning grid search

Helped run S4DM experiments

Downloaded and stored the training datasets for all environments

Ana Vitoria Rodrigues Lima

Assisted in the process of incorporating S4 into Decision transformer

Helped run experiments for S4 and DT and BC. Replicated DT for all environments and
datasets over multiple (3) runs

Contributed in calculation of table values across different runs

Implemented an efficient way to store the logs of our experiments across environments and
models so that not to confuse experiments and runs with each other

Contributed for a broader understanding of S4 within the group

References

[1] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via
sequence modeling. Advances in neural information processing systems, 34, 2021.

[2] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Re. Hippo: Recurrent memory
with optimal polynomial projections, 2020.

[3] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[4] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers,
2021.

[5] Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards — just map
them to actions, 2019.

[6] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers, 2020.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

LR kernel dim | layers Max Last iteration
6.1e-4 256 4 3067.4232 1819.75265
6.1e-4 256 8 3191.243218 | 2191.465487
6.1e-4 256 16 3489.1581625 | 3259.45171
6.1e-4 128 4 3231.5531 2123.19534
6.1e-4 128 8 3218.0228126 | 3218.022812
6.1e-4 128 16 3225.85721 1697.52307
9.1e-4 128 4 3000.010026 3000.0100

le-5 256 4 564.26030 541.91239

le-5 256 8 967.9459304 | 247.500470

le-5 256 16 733.88213 214.218650

le-5 128 4 598.7867860 563.09206

le-5 128 8 580.8788 522.0362305

le-5 128 16 463.10662548 | 420.4205075
3.1e-4 256 4 3654.690542 | 2346.19014
3.1e-4 256 8 3250.94064 2794.95862
3.1e-4 256 16 2935.1227 1895.41712
3.1e-4 128 4 2554.7521 1419.6335
3.1e-4 128 8 3205.9525 3083.82110
3.1e-4 128 16 3522.693079 | 1526.34002

Table 3: Comparison of S4DM performance using different hyperparmeters on Walker2D medium-
replay trajectories. The ‘Max’ column is the maximumm reward over all iterations, and the ‘Last
iteration’ column is the reward achieved at the last iteration of the training.

Agent | Environment | Expert
Expert | Half-Cheetah | 10656
Expert Hopper 3511
Expert Walker2D 4920

Table 4: Rewards from an expert agent on the three environments

Half Cheetah Hopper Walker

—_— —_— —_—

o1 oT or

Figure 3: Training loss for S4 and Decision Transformer trained on medium trajectories.

.1 Details of the HiPPO Kernel

[2] frames the problem of memory in LRD as a problem of online function approximation. HiPPO,
i.e. high-order polynomial projection operators, can be introduced into an RNN and can improve

10

Half Cheetah Hopper Walker

o1 oT or

Figure 4: Training loss for S4 and Decision Transformer trained on "medium" agent replay buffers

long-term dependencies. To solve the memory problematic, they phrase a way to learn memory
representation through online function approximation with projections. Essentially, since cumulative
history cannot be memorized, they compress it and have as objective to maintain this compressed
representation of history within a given model. In simpler terms, the combination of a projection,
which takes a function f in a time range ¢ and maps it to a polynomial g, and of a coefficient, that
maps that polynomial g to coefficients c of the basis of orthogonal polynomials defined with respect
to to a third measure p, is the HiPPO framework. As formulated by Gu et al: for a function f at
every time ¢ there is an optimal projection ¢(*) of f onto the space of polynomials with respect to a
measure 1Y) weighting the past. For an appropriately chosen basis, those coefficients ¢(t) represent
a compression of the history of f, and satisfies linear dynamics. By discretizing the dynamics, there
is an efficient closed-form recurrence, for an online compression of time series (fx)ken-

11

	Introduction
	Background
	Decision Transformer
	Transformers
	"Upside Down" Reinforcement Learning udrl

	Structured State Space Sequence Model (S4)

	Structured State Space Sequential Decision Model (S4DM)
	Experiments
	Environments
	Experiment details
	Implementation details

	Results
	S4 Sensitivity to Hyperparameters tuning
	Comparison of performance of S4 vs DT

	Conclusion
	Contributions
	Details of the HiPPO Kernel

